# zbMATH — the first resource for mathematics

Steady flow across a confined square cylinder: effects of power-law index and blockage ratio. (English) Zbl 1145.76007
Summary: The effect of blockage ratio on the flow characteristics of power-law fluids across a square cylinder confined in a channel has been investigated for the range of conditions $$1 \leq Re \leq 45$$, $$0.5 \leq n \leq 2.0$$ and $$\beta = 1/8$$, 1/6 and 1/4. Extensive numerical results on the individual and total drag coefficients, wake length, stream function, vorticity and power-law viscosity on the surface of the square cylinder are reported to determine the combined effects of the flow behavior index, blockage ratio and Reynolds number. The size of the wake region is influenced more by blockage than by power-law index. Similarly, drag is also seen to be more influenced by blockage ratio and by Reynolds number than that by the power-law index.

##### MSC:
 76A05 Non-Newtonian fluids 76M12 Finite volume methods applied to problems in fluid mechanics
##### Keywords:
finite volume method; drag coefficients; wake length
Full Text:
##### References:
 [1] Zdravkovich, M. M.: Flow around circular cylinders: fundamentals, Flow around circular cylinders: fundamentals 1 (1997) · Zbl 0882.76004 [2] Zdravkovich, M. M.: Flow around circular cylinders: applications, Flow around circular cylinders: applications 2 (2003) · Zbl 0882.76004 [3] Morgan, V. T.: The overall convective heat transfer from smooth circular cylinders, Adv. heat transfer 11, 199-264 (1975) [4] Ahmad, R. A.: Steady-state numerical solution of the Navier – Stokes and energy equations around a horizontal cylinder at moderate Reynolds numbers from 100 to 500, Heat transfer eng. 17, 31-81 (1996) [5] Breuer, M.; Bernsdorf, J.; Zeiser, T.; Durst, F.: Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, Int. J. Heat fluid flow 21, 186-196 (2000) [6] Guo, W. -B.; Wang, N. -C.; Shi, B. -C.; Guo, Z. -L.: Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder, Chin. phys. 12, 67-74 (2003) [7] Davis, R. W.; Moore, E. F.; Purtell, L. P.: A numerical-experimental study of confined flow around rectangular cylinders, Phys. fluids 27, 46-59 (1984) [8] Biswas, G.; Laschefski, H.; Mitra, N. K.; Fiebig, M.: Numerical investigation of mixed convection heat transfer in a horizontal channel with a built-in square cylinder, Num. heat transfer part A 18, 173-188 (1990) [9] Mukhopadhyay, A.; Biswas, G.; Sundararajan, T.: Numerical investigation of confined wakes behind a square cylinder in a channel, Int. J. Num. meth. Fluids 14, 1473-1484 (1992) · Zbl 0825.76163 [10] Suzuki, K.; Suzuki, H.: Unsteady heat transfer in a channel obstructed by an immersed body, Annu. rev. Heat transfer 5, 177-206 (1994) [11] Rosales, J. L.; Ortega, A.; Humphrey, J. A. C.: A numerical investigation of the convective heat transfer in unsteady laminar flow past a single and tandem pair of square cylinders in a channel, Num. heat transfer part A 38, 443-465 (2000) [12] Turki, S.; Abbassi, H.; Nasrallah, S. B.: Effect of the blockage ratio on the flow in a channel with a built-in square cylinder, Comp. mech. 33, 22-29 (2003) · Zbl 1062.76529 [13] Turki, S.; Abbassi, H.; Nasrallah, S. B.: Two-dimensional laminar fluid flow and heat transfer in a channel with a built-in heated square cylinder, Int. J. Thermal sci. 42, 1105-1113 (2003) · Zbl 1062.76529 [14] Sharma, A.; Eswaran, V.: Effect of channel-confinement on the two-dimensional laminar flow and heat transfer across a square cylinder, Num. heat transfer part A 47, 79-107 (2005) · Zbl 1188.76198 [15] Sharma, A.; Eswaran, V.: Effect of channel-confinement and aiding/opposing buoyancy on the two-dimensional laminar flow and heat transfer across a square cylinder, Int. J. Heat mass transfer 48, 5310-5322 (2005) · Zbl 1188.76198 [16] Dhiman, A. K.; Chhabra, R. P.; Sharma, A.; Eswaran, V.: Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime, Num. heat transfer part A 49, 717-731 (2006) [17] Dhiman, A. K.; Chhabra, R. P.; Eswaran, V.: Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Péclet number, Int. J. Heat mass transfer 48, 4598-4614 (2005) · Zbl 1189.76112 [18] Dhiman, A. K.; Chhabra, R. P.; Eswaran, V.: Effect of Péclet number on the heat transfer across a square cylinder in the steady confined channel flow regime, , 4-6 (January 2006) · Zbl 1189.76112 [19] Dhiman, A. K.; Chhabra, R. P.; Eswaran, V.: Steady flow of power-law fluids across a square cylinder, Chem. eng. Res. des. 84, 300-310 (2006) · Zbl 1145.76007 [20] A.K. Dhiman, R.P. Chhabra, V. Eswaran, Heat transfer to power-law fluids from a heated square cylinder, Num. Heat Transfer Part A (in press). · Zbl 1145.76007 [21] Dhiman, A. K.; Anjaiah, N.; Chhabra, R. P.; Eswaran, V.: Mixed convection from a heated square cylinder to Newtonian and power-law fluids, Trans. ASME J. Fluids eng. 129, 506-513 (2007) [22] Chhabra, R. P.: Bubbles, drops and particles in non-Newtonian fluids, (2006) [23] Chhabra, R. P.; Richardson, J. F.: Non-Newtonian flow in the process industries, (1999) [24] D’alessio, S. J. D.; Pascal, J. P.: Steady flow of a power-law fluid past a cylinder, Acta mech. 117, 87-100 (1996) · Zbl 0868.76007 [25] Chhabra, R. P.; Soares, A. A.; Ferreira, J. M.: Steady non-Newtonian flow past a circular cylinder: a numerical study, Acta mech. 172, 1-16 (2004) · Zbl 1065.76013 [26] Soares, A. A.; Ferreira, J. M.; Chhabra, R. P.: Flow and forced convection heat transfer in cross-flow of non-Newtonian fluids over a circular cylinder, Ind. eng. Chem. res. 44, 5815-5827 (2005) [27] Rodrigue, D.; Chhabra, R. P.; De Kee, D.: Drag of non-spherical particles in non-Newtonian fluids, Can. J. Chem. eng. 72, 588-593 (1994) [28] Chhabra, R. P.: Wall effects on terminal velocity of non-spherical particles in non-Newtonian polymer solutions, Powder technol. 88, 39-44 (1996) [29] Gupta, A. K.; Sharma, A.; Chhabra, R. P.; Eswaran, V.: Two-dimensional steady flow of a power law fluid past a square cylinder in a plane channel: momentum and heat transfer characteristics, Ind. eng. Chem. res. 42, 5674-5686 (2003) [30] Nitin, S.; Chhabra, R. P.: Non-isothermal flow of a power-law fluid past a rectangular obstacle (of aspect ratio $$1\times 2$$) in a channel: drag and heat transfer, Int. J. Eng. sci. 43, 707-720 (2005) · Zbl 1211.76084 [31] Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.: Numerical grid generation: foundations and applications, (1985) · Zbl 0598.65086 [32] Hoffmann, K. A.: Computational fluid dynamics for engineers, (1989) [33] Eswaran, V.; Prakash, S.: A finite volume method for Navier – strokes equations, (1998) [34] Sharma, A.; Eswaran, V.: Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime, Num. heat transfer part A 45, 247-269 (2004) [35] Sharma, A.; Eswaran, V.: A finite volume method, Computational fluid flow and heat transfer, 445-482 (2003) [36] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Steady flow of power-law fluids across a circular cylinder, Can. J. Chem. eng. 84, 406-421 (2006) [37] Graham, D. I.; Jones, T. E. R.: Settling and transport of spherical particles in power-law fluids at finite Reynolds number, J. non-Newtonian fluid mech. 54, 465-488 (1994) [38] Spelt, P. D. M.; Selerland, T.; Lawrence, C. J.; Lee, P. D.: Flows of inelastic non-Newtonian fluids through arrays of aligned cylinders. Part 1. Creeping flows, J. eng. Math. 51, 57-80 (2005) · Zbl 1060.76007 [39] Butcher, T. A.; Irvine, T. F.: Use of the falling ball viscometer to obtain flow curves for inelastic, non-Newtonian fluids, J. non-Newtonian fluid mech. 36, 51-70 (1990) [40] Roache, P. J.: Verification and validation in computational science and engineering, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.