# zbMATH — the first resource for mathematics

Dynamics of SEIS epidemic models with varying population size. (English) Zbl 1145.34028
SEIS models with varying population size are considered. After rescaling, the main system has the following form \left\{ \begin{aligned} \dot{s} = & \gamma i-(\lambda-\alpha)si,\\ \dot{e} = & bi+\alpha ei+\lambda si-\varepsilon e,\\ \dot{i} = & \varepsilon e-(\alpha+\gamma+b)i+\alpha i^2, \end{aligned} \right. subject to $$s+e+i=1$$. Here $$s,e,i$$ denote the proportions of susceptible, exposed, and infected individuals in a population respectively, $$b$$ is the natural birth rate of the population, $$\alpha$$ is the disease-related death rate, $$\gamma$$ is the recovery rate of the infected, $$\lambda$$ is the contact rate between the infected and other individuals, and $$\varepsilon$$ is the rate at which the exposed become infected. Letting $$\sigma=\lambda/(\alpha+\gamma)$$, the authors show that if $$\sigma<1$$, the disease-free equilibrium $$(1,0,0)$$ of the system is globally asymptotically stable, while if $$\sigma>1$$, $$(1,0,0)$$ is unstable and the system is uniformly persistent, meaning that the disease persists. If $$\sigma=1$$, bifurcation occurs and leads to “the change of stability”. The authors also consider the system equipped with birth pulse and explore the dynamic complexity of SEIS epidemic models with varying population size through numerical simulation.

##### MSC:
 34C60 Qualitative investigation and simulation of ordinary differential equation models 34D23 Global stability of solutions to ordinary differential equations 37N25 Dynamical systems in biology 92D30 Epidemiology
Full Text:
##### References:
  Anderson R. M., Nature 180 pp 361–  DOI: 10.1098/rstb.1981.0005  DOI: 10.1038/332228a0  DOI: 10.1097/00002030-198906000-00001  Anderson R. M., Infectious Disease of Humans, Dynamics and Control (1992)  DOI: 10.1016/S0022-5193(84)80150-2  Bainov D., System with Impulsive Effect: Stability, Theory and Applications (1989)  Bainov D., Impulsive Differential Equations: Periodic Solutions and Applications (1993) · Zbl 0815.34001  Bellenir K., Health Science Series 8, in: Contagious and Non-Contagious Infectious Disease Sourcebook (1996)  Brauer F., J. Math. Biol. 28 pp 451–  Busenberg S. N., Math. Biosci. 101 pp 41–  DOI: 10.1007/978-3-642-75301-5  DOI: 10.1090/S0002-9939-1986-0822433-4  DOI: 10.1016/0022-0396(86)90049-5 · Zbl 0603.58033  DOI: 10.1007/BF00290636  Coppel W. A., Stability and Asymptotic Behavior of Differential Equations (1965) · Zbl 0154.09301  DOI: 10.1016/S0025-5564(00)00067-5 · Zbl 1005.92030  DOI: 10.1007/BF02218848 · Zbl 0811.34033  Gao L. Q., J. Math. Biol. 30 pp 717–  DOI: 10.1016/0025-5564(94)00071-7 · Zbl 0834.92021  DOI: 10.1006/tpbi.1995.1006 · Zbl 0833.92018  Hale J. K., Ordinary Differential Equations (1969) · Zbl 0186.40901  DOI: 10.1016/0025-5564(76)90132-2 · Zbl 0326.92017  Hethcote H. W., Periodicity in Epidemiological Models, in Applied Mathematical Ecology (1989)  DOI: 10.1016/0025-5564(88)90078-8 · Zbl 0727.92025  DOI: 10.1016/0025-5564(88)90031-4 · Zbl 0686.92016  DOI: 10.1137/1.9781611970432  DOI: 10.1006/jdeq.1993.1097 · Zbl 0786.34033  DOI: 10.1137/S0036141094266449 · Zbl 0873.34041  DOI: 10.1016/S0025-5564(99)00030-9 · Zbl 0974.92029  Li M. Y., SIAM J. Appl. Math. 62 pp 58–  DOI: 10.1016/0928-4869(93)90015-I  DOI: 10.1038/261459a0 · Zbl 1369.37088  Mena-Lorca J., J. Math. Biol. 30 pp 693–  DOI: 10.1016/0040-5809(88)90019-6 · Zbl 0639.92012  DOI: 10.2307/2373413 · Zbl 0167.21803  Pugh C. C., Erg. Th. Dyn. Syst. 3 pp 261–  Pugliese A., J. Math. Biol. 28 pp 65–  Rössler O. E., Z. Natürforsch 31 pp 259–  DOI: 10.1007/s002850000070 · Zbl 0977.92032  DOI: 10.1017/S030821050001920X · Zbl 0622.34040  DOI: 10.1016/0025-5564(92)90081-7 · Zbl 0782.92018  DOI: 10.1007/BFb0083477  DOI: 10.1216/rmjm/1181072473 · Zbl 0799.92020  DOI: 10.1007/BF00168799 · Zbl 0823.92027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.