×

zbMATH — the first resource for mathematics

Perturbative quantum corrections and flux compactifications. (English) Zbl 1144.81496
Summary: We review the results of arXiv:0704.0730, a string theory test of the phenomenologically interesting large volume scenario (LVS) of Balasubramanian et al. In particular, we consider whether the LVS expansion of the string effective action is consistent when the open string one-loop corrections due to D-branes and O-planes are taken into account. The result is that LVS is surprisingly robust. We also review the computation of soft supersymmetry breaking terms, which is only modified at subleading order.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Giddings, Phys. Rev. D 66 pp 106006– (2002)
[2] Kachru, Phys. Rev. D 68 pp 046005– (2003)
[3] Balasubramanian, J. High Energy Phys. 0503 pp 007– (2005)
[4] Conlon, J. High Energy Phys. 0508 pp 007– (2005)
[5] Becker, J. High Energy Phys. 0206 pp 060– (2002)
[6] Berg, J. High Energy Phys. 0709 pp 031– (2007)
[7] Berg, J. High Energy Phys. 0511 pp 030– (2005)
[8] Antoniadis, Nucl. Phys. B 489 pp 160– (1997)
[9] Angelantonj, Phys. Rep. 371376 pp 1– (2002)
[10] , , and , Four-dimensional string compactifications with D-branes, orientifolds and fluxes, arXiv:hep-th/0610327.
[11] Conlon, J. High Energy Phys. 0606 pp 029– (2006)
[12] Candelas, Nucl. Phys. B 429 pp 626– (1994)
[13] Denef, J. High Energy Phys. 0406 pp 034– (2004)
[14] and , On the modified KKLT procedure: A case study for the P(11169)(18) model, arXiv:hep-th/0606047.
[15] Dine, Phys. Lett. B 162 pp 299– (1985)
[16] Balasubramanian, J. High Energy Phys. 0411 pp 085– (2004)
[17] Berg, Phys. Rev. Lett. 96 pp 021601– (2006)
[18] Nilles, Phys. Rep. 110 pp 1– (1984)
[19] A supersymmetry primer, arXiv:hep-ph/9709356.
[20] Choi, Nucl. Phys. B 718 pp 113– (2005)
[21] Conlon, J. High Energy Phys. 0701 pp 032– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.