zbMATH — the first resource for mathematics

Modeling of transport phenomena in hybrid laser-MIG keyhole welding. (English) Zbl 1144.80362
Summary: Mathematical models and associated numerical techniques have been developed to investigate the complicated transport phenomena in spot hybrid laser-MIG keyhole welding. A continuum formulation is used to handle solid phase, liquid phase, and the mushy zone during the melting and solidification processes. The volume of fluid (VOF) method is employed to handle free surfaces, and the enthalpy method is used for latent heat. Dynamics of weld pool fluid flow, energy transfer in keyhole plasma and weld pool, and interactions between droplets and weld pool are calculated as a function of time. The effect of droplet size on mixing and solidification is investigated. It is found that weld pool dynamics, cooling rate, and final weld bead geometry are strongly affected by the impingement process of the droplets in hybrid laser-MIG welding. Also, compositional homogeneity of the weld pool is determined by the competition between the rate of mixing and the rate of solidification.

80A20 Heat and mass transfer, heat flow (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows
76R50 Diffusion
76M12 Finite volume methods applied to problems in fluid mechanics
80A22 Stefan problems, phase changes, etc.
78A60 Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI
[1] Duley, W.: Laser welding, (1999)
[2] Dawnes, C.: Laser welding, (1992)
[3] Schinzel, C.; Hohenberger, B.; Dausinger, F.; Hügel, H.: Laser welding of aluminum car bodies – from research to production, Proc. ICALEO sec. F, 56-65 (1998)
[4] Ishide, T.; Tsubota, S.; Nayama, M.; Shimokusu, Y.; Nagashima, T.; Okimura, K.: 10kW class YAG laser application for heavy components, SPIE high-power lasers manuf. 3888, 543-550 (1999)
[5] Connor, L. P.: Welding handbook, (1987)
[6] Hatch, J. E.: Aluminum: properties and physical metallurgy, (1984)
[7] Dudas, J. H.; Collins, F. R.: Preventing weld cracks in high-strength aluminum alloys, Weld. J. 45, 241s-249s (1966)
[8] Cieslak, M. J.; Fuerschbach, P. W.: On the weldability, composition, and hardness of pulsed and continuous nd: YAG laser welds in aluminum alloys 6061, 5456, and 5086, Metall. trans. 19B, 319-329 (1988)
[9] Ono, M.; Shinbo, Y.; Yoshitake, A.; Ohmura, M.: Development of laser-arc hybrid-welding, NKK techn. Rev. 86, 8-12 (2002)
[10] Weisheit, A.; Galun, R.; Mordike, B. L.: CO2 laser beam welding of magnesium-based alloys, Weld. J. 77, No. 4, 149s-154s (1998)
[11] Kutsuna, M.; Chen, L.: Interaction of both plasmas in CO2 laser – MAG hybrid welding of carbon steel, Proc. SPIE 4831, 341-346 (2002)
[12] Ishide, T.; Tsubota, S.; Watanabe, M.: Latest MIG TIG arc-YAG laser hybrid welding systems for various welding products, Proc. SPIE 4831, 347 (2002)
[13] Staufer, H.; Rührnößl, M.; Miessbacher, G.: Hybrid welding for the automotive industry, Ind. laser solut. 7 (2003)
[14] Engström, H.; Nilsson, K.; Flinkfeldt, J.; Nilsson, T.; Skirfors, A.; Gustavsson, B.: Laser hybrid welding of high strength steels, Proc. ICALEO 2001, 125-134 (2001)
[15] Missouri, S.; Sili, A.: Structural characterization of C – mn steel laser beam welded joints with powder filler metal, Weld. J. 79, No. 11, 317-323 (2000)
[16] Hwang, J. R.; Doong, J. L.; Chen, C. C.: Fatigue crack growth in laser weldments of a cold rolled steel, Mater. trans. J. 37, No. 8, 1443-1446 (1996)
[17] E. Schubert, M. Klassen, J. Skupin, G. Sepold, Int. Conf. Weld. Melt. Electron Laser Beam (1998) 195.
[18] Naito, Y.; Katayama, S.; Matsunawa, A.: Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding, Proc. SPIE 4831, 357-362 (2002)
[19] Sun, S.; Moisio, T.: Laser beam welding of austenitic/ferritic dissimilar steel joints using nickel based filler wire, Mater. sci. Technol., 603-608 (1993)
[20] Zhou, J.; Tsai, H. L.; Wang, P. C.: Transport phenomena and keyhole dynamics during pulsed laser welding, ASME J. Heat transfer 128, 680-690 (2006)
[21] D.B. Kothe, R.C. Mjolsness, M.D. Torrey, Ripple: A Computer Program for Incompressible Flows with Free Surfaces, LA-12007-MS, Los Alamos National Laboratory, 1991.
[22] Chiang, K. C.; Tsai, H. L.: Shrinkage-induced fluid flow and domain change in two-dimensional alloy solidification, Int. J. Heat mass transfer 35, 1763-1769 (1992)
[23] Miyamoto, I.; Ohmura, E.; Maede, T.: Dynamic behavior of plume and keyhole in CO2 laser welding, Proc. ICALEO sec. G, 210-218 (1997)
[24] Dowden, J.; Postacioglu, N.; Davis, M.; Kapadia, P.: A keyhole model in penetration welding with a laser, J. phys. D: appl. Phys. 20, 36-44 (1987)
[25] Wang, Y.; Tsai, H. L.: Impingement of filler droplets and weld pool dynamics during gas metal arc welding process, Int. J. Heat mass transfer 44, 2067-2080 (2001) · Zbl 1064.76624 · doi:10.1016/S0017-9310(00)00251-9
[26] Sahoo, P.; Debroy, T.; Mcnallan, M. J.: Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy, Metall. trans. 19B, 483-491 (1988)
[27] Choo, R. T. C.; Szekely, J.; David, S. A.: On the calculation of the free surface temperature of gas – tungsten-arc weld pools from first principles: part II. Modeling the weld pool and comparison with experiments, Metall. trans. 23B, 371-384 (1992)
[28] Knight, C. J.: Theoretical modeling of rapid surface vaporization with back pressure, Aiaa j. 17, 519-523 (1979)
[29] Semak, V.; Matsunawa, A.: The role of recoil pressure in energy balance during laser materials processing, J. phys. D: appl. Phys. 30, 2541-2552 (1997)
[30] Zacharia, T.; David, S. A.; Vitek, J. M.: Effects of evaporation and temperature-dependent material properties on weld pool development, Metall. trans. 22B, 233-241 (1991)
[31] Raizer, Yu.P.: Laser-induced discharge phenomena, (1977)
[32] Spitzer, L.: Physics of fully ionized gases, (1967) · Zbl 0074.45001
[33] Kogelnik, H.; Li, T.: Laser beams and resonators, Appl. opt. 5, No. 10, 1550-1554 (1966)
[34] Siegel, R.; Howell, J. R.: Thermal radiation heat transfer, (1992)
[35] Ho, R.; Grigoropoulos, C. P.; Humphrey, J. A. C.: Gas dynamics and radiation heat transfer in the vapor plume produced by pulsed laser irradiation of aluminum, J. appl. Phys. 79, 7205-7215 (1996)
[36] Zhu, F. L.; Tsai, H. L.; Marin, S. P.; Wang, P. C.: A comprehensive model on the transport phenomena during gas metal arc welding process, Progr. comput. Fluid dyn. 4, No. 2, 99-117 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.