×

zbMATH — the first resource for mathematics

Logarithmic moduli spaces for surfaces of class VII. (English) Zbl 1144.32004
Authors’ summary: We describe logarithmic moduli spaces of pairs \((S, D)\) consisting of a minimal surface \(S\) of class VII with second Betti number \(b_{2} > 0\) together with a reduced maximal divisor \(D\) of \(b_{2}\) rational curves. The special case of Enoki surfaces has already been considered by Dloussky and Kohler. We use normal forms for the action of the fundamental group of \((S,D)\) and for the associated holomorphic contraction \(({\mathbb{C}},0)\to ({\mathbb{C}},0)\).

MSC:
32G13 Complex-analytic moduli problems
32J15 Compact complex surfaces
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bogomolov F.A. (1976). Classification of surfaces of class VII0 with b 2 = 0. Izv. Akad. Nauk. SSSR Ser. Mat. 40(2): 273–288
[2] Dabrowski K. (1982). Moduli spaces for Hopf surfaces. Math. Ann. 259(2): 201–225 · Zbl 0497.32017 · doi:10.1007/BF01457309
[3] Dloussky, G.: Structure des surfaces de Kato. Mémoires de la S.M.F 112, 14 (1984) · Zbl 0543.32012
[4] Dloussky, G., Kohler, F.: Classification of singular germs of mappings and deformations of compact surfaces of class VII0. Ann. Polonici Math. LXX 49–83 (1998) · Zbl 0930.32013
[5] Dloussky G., Oeljeklaus K. and Toma M. (2001). Surfaces de la classe VII admettant un champ de vecteurs II. Commun. Math. Helv. 76: 640–664 · Zbl 1011.32014 · doi:10.1007/s00014-001-8323-x
[6] Dloussky G., Oeljeklaus K. and Toma M. (2003). Class VII0 Surfaces with b 2 curves. Tohoku Math. J. 55: 283–309 · Zbl 1034.32012 · doi:10.2748/tmj/1113246942
[7] Favre Ch. (2000). Classification of 2-dimensional contracting rigid germs. J. Math. Pures Appl. 79: 475–514 · Zbl 0983.32023 · doi:10.1016/S0021-7824(00)00162-8
[8] Kawamata Y. (1978). On deformations of compactifiable complex manifolds. Math. Ann. 235: 247–265 · Zbl 0371.32017 · doi:10.1007/BF01420124
[9] Inoue M. (1974). On surfaces of class VII0. Invent. Math. 24: 269–310 · Zbl 0283.32019 · doi:10.1007/BF01425563
[10] Kato, M.: Compact complex manifolds containing ”global spherical shells”. In: Proceedings of the Int. Symp. Alg. Geometry, Kyoto 1977, Kinokuniya Book Store, Tokyo (1978) · Zbl 0379.32023
[11] Kodaira, K.: On the structure of compact complex analytic surfaces I, II. Am. J. Math. 86, 751–798 (1964); 88, 682–721 (1966) · Zbl 0137.17501
[12] Li J., Yau S.-T. and Zheng F. (1994). On projectively flat Hermitian manifolds. Commun. Anal. Geom. 2(1): 103–109 · Zbl 0837.53053
[13] Nakamura I. (1990). On surfaces of class VII0 with curves II. Tohoku Math. J. 42: 475–516 · Zbl 0732.14019 · doi:10.2748/tmj/1178227571
[14] Oeljeklaus K., Toma M. and Zaffran D. (2001). Une caractérisation des surfaces d’Inoue–Hirzebruch. Ann. Inst. Fourier Grenoble 51: 1243–1257 · Zbl 0993.32013
[15] Teleman A. (1994). Projectively flat surfaces and Bogomolov’s theorem on class VII0 surfaces. Int. J. Math. 5(2): 253–264 · Zbl 0803.53038 · doi:10.1142/S0129167X94000152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.