zbMATH — the first resource for mathematics

The surplus prior to ruin and the deficit at ruin for a correlated risk process. (English) Zbl 1143.91025
The authors obtain an explicit characterization for the joint probability density function of the surplus immediately prior to ruin and the deficit at ruin for a general risk process, which includes the Sparre Andersen risk model with phase-type inter-claim times and claim sizes. It is allowed for correlation in the inter-claim times, as well as correlation between the claim times and the claim sizes. The authors consider the processes that can be analyzed using techniques for fluid queues.

91B30 Risk theory, insurance (MSC2010)
Full Text: DOI
[1] Asmussen S., Advances in Queueing: Theory, Methods, and Open Problems pp 79– (1995)
[2] DOI: 10.2143/AST.32.2.1029 · Zbl 1081.60028 · doi:10.2143/AST.32.2.1029
[3] DOI: 10.1080/03461230410000565 · Zbl 1092.91037 · doi:10.1080/03461230410000565
[4] DOI: 10.1137/1.9780898719734 · Zbl 0922.60001 · doi:10.1137/1.9780898719734
[5] DOI: 10.1214/aoap/1050689597 · Zbl 1030.60067 · doi:10.1214/aoap/1050689597
[6] Avram F., Annals of University of Craiova 30 pp 38– (2003)
[7] DOI: 10.1142/9789812777164_0005 · doi:10.1142/9789812777164_0005
[8] Ramaswami V., Teletraffic Engineering in a Competitive World (Proceedings of the 16th International Teletraffic Congress) pp 1019– (1999)
[9] DOI: 10.1016/0167-6687(88)90076-5 · Zbl 0674.62072 · doi:10.1016/0167-6687(88)90076-5
[10] DOI: 10.1016/j.insmatheco.2003.11.003 · Zbl 1043.60036 · doi:10.1016/j.insmatheco.2003.11.003
[11] DOI: 10.1145/361573.361582 · Zbl 1372.65121 · doi:10.1145/361573.361582
[12] DOI: 10.1142/9789812779311 · doi:10.1142/9789812779311
[13] DOI: 10.1080/03461230110106471 · Zbl 1142.62088 · doi:10.1080/03461230110106471
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.