zbMATH — the first resource for mathematics

Stochastic 3D Navier-Stokes equations in a thin domain and its \(\alpha \)-approximation. (English) Zbl 1143.76422
Summary: In the thin domain \(\mathcal O _\varepsilon = \mathbb T^2 \times (0,\varepsilon)\), where \(\mathbb T^2\) is a two-dimensional torus, we consider the 3D Navier-Stokes equations, perturbed by a white in time random force, and the Leray \(\alpha \)-approximation for this system. We study ergodic properties of these models and their connection with the corresponding 2D models in the limit \(\epsilon \rightarrow 0\). In particular, under natural conditions concerning the noise we show that in some rigorous sense the 2D stationary measure \(\mu \) comprises asymptotical in time statistical properties of solutions for the 3D Navier-Stokes equations in \(\mathcal O _\varepsilon\), when \(\varepsilon \ll 1\).

76D06 Statistical solutions of Navier-Stokes and related equations
35Q30 Navier-Stokes equations
76M35 Stochastic analysis applied to problems in fluid mechanics
Full Text: DOI
[1] Avrin, J.D., Large-eigenvalue global existence and regularity results for the navier – stokes equation, J. differential equations, 127, 365-390, (1996) · Zbl 0863.35075
[2] Bricmont, J.; Kupiainen, A.; Lefevere, R., Ergodicity of the 2D navier – stokes equations with random forcing, Comm. math. phys., 224, 65-81, (2001) · Zbl 0994.60066
[3] Chepyzhov, V.; Titi, E.; Vishik, M., On the convergence of solutions of the Leray-\(\alpha\) model to the trajectory attractor of the 3D navier – stokes system, Discrete contin. dyn. syst., 17, 481-500, (2007) · Zbl 1146.35071
[4] Cheskidov, A.; Holm, D.; Olson, E.; Titi, E., On a Leray-\(\alpha\) model of turbulence, Proc. R. soc. lond. ser.A, 461, 629-649, (2005) · Zbl 1145.76386
[5] Chueshov, I., On determining functionals for stochastic navier – stokes equations, Stoch. stoch. reports, 68, 45-64, (1999) · Zbl 0945.35093
[6] Chueshov, I.; Kuksin, S., Random kick-forced 3D navier – stokes equations in a thin domain, Arch. ration. mech. anal., 188, 117-153, (2008) · Zbl 1133.76015
[7] Chueshov, I.; Raugel, G.; Rekalo, A., Interface boundary value problem for the navier – stokes equations in thin two-layer domains, J. differential equations, 208, 449-493, (2005) · Zbl 1078.35084
[8] Constantin, P.; Foiaş, C., Navier-Stokes equations, (1988), University of Chicago Press Chicago · Zbl 0687.35071
[9] Cullen, M.J.P., A mathematical theory of large-scale atmosphere/Ocean flow, (2006), Imperial College Press London
[10] Da Prato, G.; Zabszyk, J., Stochastic equations in infinite dimensions, (1992), Cambridge University Press Cambridge
[11] E, W.; Mattingly, J.C.; Sinai, Ya.G., Gibbsian dynamics and ergodicity for the stochastically forced navier – stokes equation, Comm. math. phys., 224, 83-106, (2001) · Zbl 0994.60065
[12] Flandoli, F.; Maslowski, B., Ergodicity of the 2D navier – stokes equation under random perturbations, Comm. math. phys., 172, 119-141, (1995) · Zbl 0845.35080
[13] Hairer, M.; Mattingly, J., Ergodicity of the 2D navier – stokes equations with degenerate stochastic forcing, Ann. math., 164, 993-1032, (2006) · Zbl 1130.37038
[14] Iftimie, D., The 3D navier – stokes equations seen as a perturbation of the 2D navier – stokes equations, Bull. soc. math. France, 127, 473-517, (1999) · Zbl 0946.35059
[15] Iftimie, D.; Raugel, G., Some results on the navier – stokes equations in thin 3D domains, J. differential equations, 169, 281-331, (2001) · Zbl 0972.35085
[16] Ikeda, N.; Watanabe, S., Stochastic differential equations and diffusion processes, (1989), North-Holland Amsterdam · Zbl 0684.60040
[17] Komech, A.I.; Vishik, M.I., Strong solutions of 2D navier – stokes system and the corresponding Kolmogorov equations, Z. anal. anwendungen., 1, 3, 23-52, (1982), (in Russian) · Zbl 0512.60050
[18] Kuksin, S.B., Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions, (2006), European Mathematical Society Publishing House Zürich, see also mp_arc 06-178
[19] Kuksin, S.B.; Shirikyan, A., Stochastic dissipative PDE’s and Gibbs measures, Comm. math. phys., 213, 291-330, (2000) · Zbl 0974.60046
[20] Kuksin, S.B.; Shirikyan, A., Coupling approach to white-forced nonlinear PDE’s, J. math. pures appl., 81, 567-602, (2002) · Zbl 1021.37044
[21] Leray, J., Essai sur le mouvement d’un fluide visqueux emplissant l’espace, Acta math., 63, 193-248, (1934) · JFM 60.0726.05
[22] Moise, I.; Temam, R.; Ziane, M., Asymptotic analysis of the navier – stokes equations in thin domains, Topol. methods nonlinear anal., 10, 249-282, (1997) · Zbl 0957.35108
[23] Montgomery-Smith, S., Global regularity of the navier – stokes equation on thin three dimensional domains with periodic boundary conditions, Electronic J. diff. eqns., 11, 1-19, (1999) · Zbl 0923.35120
[24] Raugel, G.; Sell, G., Navier – stokes equations on thin domains. I: global attractors and global regularity of solutions, J. amer. math. soc., 6, 503-568, (1993) · Zbl 0787.34039
[25] Raugel, G.; Sell, G., Navier-Stokes equations on thin 3D domains. II. global regularity of spatially periodic solutions, (), 205-247 · Zbl 0804.35106
[26] Shirikyan, A., Ergodicity for a class of Markov processes and applications to randomly forced PDE’s, Russian J. math. phys., 12, 81-96, (2005) · Zbl 1132.60317
[27] Temam, R.; Ziane, M., Navier – stokes equations in three-dimensional thin domains with various boundary conditions, Adv. differential equations, 1, 499-546, (1996) · Zbl 0864.35083
[28] Vishik, M.I.; Komech, A.I.; Fursikov, A.V., Some mathematical problems of statistical hydromechanics, Russian math. surveys, 34, 5, 149-234, (1979) · Zbl 0503.76045
[29] Vishik, M.I.; Fursikov, A.V., Mathematical problems of statistical hydromechanics, (1988), Kluwer Academic Publishers Dordrecht · Zbl 0688.35077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.