zbMATH — the first resource for mathematics

A comparative study of numerical solutions of a class of KdV equation. (English) Zbl 1143.65078
Summary: We present a comparative study of a meshless method, modified Bernstein polynomials and a B-spline finite element method for the numerical solution of two different models of the Korteweg-de Vries (KdV) equation. The multiquadric and Gaussian radial basis functions (RBFs) are used due to an exponential convergence rate. Excellent agreement is found between exact and RBFs solutions and the same accuracy is obtained for Bernstein polynomials and the B-spline finite element method.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q51 Soliton equations
Full Text: DOI
[1] Korteweg, D.J.; de Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave, Philos. mag., 39, 422-443, (1895) · JFM 26.0881.02
[2] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M., Korteweg – de Vries equation and generalizations, VI, methods for exact solution, Comm. pure appl. math., 27, 97-133, (1974) · Zbl 0291.35012
[3] Hirota, R., Exact solution of the korteweg – de Vries equation for multiple collisions of solitons, Phys. rev. lett., 27, 1192-1194, (1971) · Zbl 1168.35423
[4] Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, J. math. phys., 14, 805-809, (1973) · Zbl 0257.35052
[5] Zabuskay, N.J., A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, (), 223-258
[6] Fornberg, B.; Whitham, G.B., A numerical and theoretical study of certain nonlinear wave phenomena, Philos. trans. roy. soc., 289, 373-404, (1978) · Zbl 0384.65049
[7] Kansa, E.J., Multiquadric – a scattered data approximation scheme with applications to computational fluid dynamics, Comput. math. appl., 19, 147-161, (1990) · Zbl 0850.76048
[8] Zabuskay, N.J.; Kuruskal, M.D., Interaction of solitons in a collisionless plasma and recurrence of initial states, Phys. rev. lett., 15, 240-243, (1965) · Zbl 1201.35174
[9] Goda, K., On instability of some finite difference schemes for korteweg – de Vries equation, J. phys. soc. jpn., 39, 229-236, (1975) · Zbl 1337.65136
[10] Vliengenthart, A.C., On finite difference methods for the korteweg – de Vries equation, J. eng. math., 5, 137-155, (1971) · Zbl 0221.76003
[11] Gardner, G.A.; Ali, A.H.A.; Gardner, L.R.T., A finite element solution for the korteweg – de Vries equation using cubic B-spline shape functions, (), 565-570 · Zbl 0883.65075
[12] G.A. Gardner, A. Ali, A numerical solutions for the Korteweg – de Vries equation using Galerkins method with Hermite polynomial shape functions, in: Proceedings of the International Conference on Modeling and Simulations, vol. 1C, Istanbul, 1988, pp. 81-93.
[13] Carlson, R.E.; Foley, T.A., The parameter R2 in multiquadric interpolation, Comput. math. appl., 21, 29-42, (1991) · Zbl 0725.65009
[14] Debnath, L., Nonlinear partial differential equations for scientists and engineers, (2005), Birkhäuser · Zbl 1069.35001
[15] Bhatta, D.D.; Bhatti, M.I., Numerical solution of KdV equation using modified Bernstein polynomials, Appl. math. comput., 174, 1255-1268, (2006) · Zbl 1090.65117
[16] Taha, T.R.; Ablowitz, M.J., Analytical and numerical aspects of certain nonlinear evolution equations. III. numerical, korteweg – de Vries equation, J. comput. phys., 55, 231-253, (1984) · Zbl 0541.65083
[17] N Aksan, E.; Özdes, A., Numerical solution of korteweg – de Vries equation by Galerkin B-spline finite element method, Appl. math. comput., 175, 1256-1265, (2006) · Zbl 1093.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.