zbMATH — the first resource for mathematics

Simplicial nonpositive curvature. (English) Zbl 1143.53039
Summary: We introduce a family of conditions on a simplicial complex that we call local \(k\)-largeness (\(k\geq 6\) is an integer). They are simply stated, combinatorial and easily checkable. One of our themes is that local 6-largeness is a good analogue of the non-positive curvature: locally 6-large spaces have many properties similar to non-positively curved ones. However, local 6-largeness neither implies nor is implied by non-positive curvature of the standard metric. One can think of these results as a higher dimensional version of small cancellation theory. On the other hand, we show that \(k\)-largeness implies non-positive curvature if \(k\) is sufficiently large. We also show that locally \(k\)-large spaces exist in every dimension. We use this to answer questions raised by D. Burago, M. Gromov and I. Leary.

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C22 Geodesics in global differential geometry
53C20 Global Riemannian geometry, including pinching
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
Full Text: DOI Numdam EuDML
[1] J. Alonso and M. Bridson, Semihyperbolic groups, Proc. Lond. Math. Soc., III. Ser., 70 (1995), 56–114. · Zbl 0823.20035
[2] M. Bestvina, Questions in Geometric Group Theory, http://www.math.utah.edu/estvina. · Zbl 1286.57013
[3] M. Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc., 127 (1999), no. 7, 2143–2146. · Zbl 0928.52007
[4] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissenschaften 319, Springer, Berlin (1999).
[5] D. Burago, Hard balls gas and Alexandrov spaces of curvature bounded above, Doc. Math., Extra Vol. ICM II (1998), 289–298. · Zbl 0995.37024
[6] D. Burago, S. Ferleger, B. Kleiner and A. Kononenko, Gluing copies of a 3-dimensional polyhedron to obtain a closed nonpositively curved pseudomanifold, Proc. Amer. Math. Soc., 129 (2001), no. 5, 1493–1498. · Zbl 0993.53013
[7] R. Charney and M. Davis, Singular metrics of nonpositive curvature on branched covers of Riemannian manifolds, Amer. J. Math., 115 (1993), no. 5, 929–1009. · Zbl 0804.53056
[8] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamb., 25 (1961), 71–76. · Zbl 0098.14703
[9] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word Processing in Groups, Jones and Barlett, Boston, MA (1992). · Zbl 0764.20017
[10] E. Ghys and P. de la Harpe (eds.), Sur les Groupes Hyperboliques d’apres Mikhael Gromov, Progr. Math., vol. 83, Birkhäuser, Boston, MA (1990). · Zbl 0731.20025
[11] C. McA. Gordon, D. D. Long and A. W. Reid, Surface subgroups of Coxeter and Artin groups, J. Pure Appl. Algebra, 189 (2004), 135–148. · Zbl 1057.20031
[12] M. Goresky, R. MacPherson, Intersection homology theory, Topology, 19 (1980), no. 2, 135–162. · Zbl 0448.55004
[13] M. Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory, G. Niblo and M. Roller (eds.), LMS Lecture Notes Series 182, vol. 2, Cambridge Univ. Press (1993). · Zbl 0841.20039
[14] M. Gromov, Hyperbolic groups, Essays in Group Theory, S. Gersten (ed.), Springer, MSRI Publ. 8 (1987), 75–263.
[15] F. Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71, 2003.
[16] T. Januszkiewicz and J. Świątkowski, Hyperbolic Coxeter groups of large dimension, Comment. Math. Helv., 78 (2003), 555–583. · Zbl 1068.20043
[17] T. Januszkiewicz and J. Świątkowski, Filling invariants in systolic complexes and groups, submitted, 2005.
[18] T. Januszkiewicz and J. Świątkowski, Nonpositively curved developments of billiards, preprint, 2006.
[19] D. Meintrup and T. Schick, A model for the universal space for proper actions of a hyperbolic group, New York J. Math., 8 (2002), 1–7. · Zbl 0990.20027
[20] I. Leary, A metric Kan–Thurston theorem, in preparation.
[21] I. Leary and B. Nucinkis, Every CW-complex is a classifying space for proper bundles, Topology, 40 (2001), 539–550. · Zbl 0983.55010
[22] R. Lyndon and P. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer, Berlin (1977). · Zbl 0368.20023
[23] J. Świątkowski, Regular path systems and (bi)automatic groups, Geom. Dedicata, 118 (2006), 23–48. · Zbl 1165.20036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.