×

zbMATH — the first resource for mathematics

Constructible sets of linear differential equations and effective rational approximations of polylogarithmic functions. (English) Zbl 1143.34057
The paper is concerned with rational approximations to solutions of certain Fuchsian linear differential equations defined on the Riemann sphere from the viewpoint of the theory of moduli of differential equations with a fixed monodromy group. The author finds a connection between Fuchsian ODE’s and Diophantine approximations of special Siegel \(G\)-functions. In particular, the rigidity assumption for the Fuchsian ODE’s enables the author to give new explicit formulae for Padé approximations.

MSC:
34M35 Singularities, monodromy and local behavior of solutions to ordinary differential equations in the complex domain, normal forms
30E10 Approximation in the complex plane
33B30 Higher logarithm functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Andrews, R. Askey and R. Roy,Special functions, inThe Encyclopedia of Mathematics and its Applications, Vol. 71 (G.-C. Rota ed.), Cambridge University Press, Cambridge, 1999. · Zbl 0920.33001
[2] D. V. Anosov and A. A. Bolibruch,The Riemann-Hilbert Problem, Aspects of Mathematics, Vieweg, 1996. · Zbl 0801.34002
[3] R. Apéry,Irrationalité de \(\zeta\)(2)et \(\zeta\)(3), Asterisque61 (1979), 11–13.
[4] K. Ball and T. Rivoal,Irrationalité d’une infinité de valeurs de la fonction zeta aux entiers impairs, Inventiones Mathematicae146 (2001), 193–207. · Zbl 1058.11051 · doi:10.1007/s002220100168
[5] D. Bertrand,Exposants des systèmes différentiels, vecteurs cycliques et majorations de multiplicités, Publications Mathematiques de l’Université Paris6 (1987/1988), no. 88, 1–17.
[6] D. Bertrand and F. Beukers,Equations différentielles linéaires et majorations de multiplicités, Annales Scientifiques de l’École Normale Supérieure4, Ser. 18 (1985), 181–192.
[7] F. Beukers,The values of polylogarithms, inTopics in Classical Number Theory, Colloquia Mathematica Societatis János Bolyai, Budapest, 1981, pp. 219–228.
[8] F. Beukers,A note on the irrationality of \(\zeta\)(2)and \(\zeta\)(3), The Bulletin of the London Mathematical Society11 (1979), 268–272. · Zbl 0421.10023 · doi:10.1112/blms/11.3.268
[9] G. V. Chudnovsky,Padé approximations to the generalized hypergeometric function 1, Journal de Mathématiques Pures et Appliquées58 (1979), 445. · Zbl 0434.10023
[10] G. V. Chudnovsky,Approximations de Padé explicites pour les solutions des équations différentielles linéaires fuchsiennes, Comptes Rendus de l’Académie des Sciences, Paris, Série A290 (1980).
[11] G. V. Chudnovsky and D. V. Chudnovsky,Padé and rational approximations to systems of functions and their arithmetic applications, inNumber Theory, Lecture Notes in Mathematics1052, Springer-Verlag, New York, 1982. · Zbl 0506.35086
[12] A. Erdélyi,Higher Transcendental Functions, McGraw-Hill, New York, 1953.
[13] S. Fischler,Irrationalité des valeurs de zêta (d’après Apéry, Rivoal,...), Seminaire Bourbaki, 2002–2003, exposé no. 910.
[14] S. Fischler and T. Rivoal,Approximants de Padé et séries hypergéométriques équilibrées, Preprint, mars 2003.
[15] L. A. Gutnik,The irrationality of certain quantities involving \(\zeta\)(3), Uspekhi Matematicheskikh Nauk34 (1979), no. 3, 190. English translation: Russian Mathematical Surveys34 (1979), no. 3, 200; Acta Mathematica42 (1983), 255–264. · Zbl 0474.10026
[16] M. Hata,On the linear independence of the values of polylogarithmic functions, Journal de Mathématiques Pures et Appliquées69 (1990), 133–173. · Zbl 0712.11040
[17] M. Huttner,Problème de Riemann et irrationalité d’un quotient de deux fonctions hypergéométriques de Gauss, Comptes Rendus de l’Académie des Sciences, Paris, Série A302 (1986), 603–606. · Zbl 0607.10026
[18] M. Huttner,Problème de Riemann effectif et approximants de Padé Hermite, Approximations Diophantiennes et Nombres transcendants, Colloquium Luminy, de Gruyter, Berlin-New York, 1990, pp. 173–193. · Zbl 0768.11019
[19] M. Huttner,Equations différentielles Fuchsiennes. Approximations du dilogarithme de \(\zeta\)(2)et \(\zeta\)(3), Publications de l’Institut de Recherche Mathématique Avancée, Lille, 1997.
[20] M. Huttner,Constructible sets of linear differentiable equations and effective rational approximations of G-functions, Publications de l’Institut de Recherche Mathématique Avancée59 (2002).
[21] E. L. Ince,Ordinary Differential Equations, Dover, New York, 1956. · Zbl 0063.02971
[22] N. Katz,Rigid Local Systems, Annals of Mathematics Studies, Vol. 139, Princeton University Press, Princeton, 1996. · Zbl 0864.14013
[23] A. Levelt,Hypergeometric functions, Indagationes Mathematicae23 (1961), 361–403. · Zbl 0124.03602
[24] L. M. Milne-Thomson,The Calculus of Finite Differences, Chelsea, New York, 1951. · JFM 59.1111.01
[25] Yu. V. Nesterenko,Hermite Padé approximants of generalized hypergeometric functions, Matematicheskii Sbornik185 (1994), 39–72; English transl. Russian Academy of Sciences. Sbornik Mathematics83 (1995), 189–219. · Zbl 0849.11052
[26] Yu. V. Nesterenko,A few remarks on \(\zeta\)(3), Mathematical Notes59 (1996), 615–636. · Zbl 0888.11028 · doi:10.1007/BF02307212
[27] Yu. V. Nesterenko,Integral identities and constructions of approximations to zeta-values, Journal de Théorie des Nombres de Bordeaux15 (2003), 535–550. · Zbl 1090.11047
[28] E. M. Nikishin,On the irrationality of the values of the functions F(x,s), Matematicheskii Sbornik37 (1979), 381–388. · Zbl 0441.10031 · doi:10.1070/SM1980v037n03ABEH001961
[29] N-E. Norlund,Hypergeometric functions, Acta Mathematica94 (1955), 289–349. · Zbl 0067.29402 · doi:10.1007/BF02392494
[30] J. Oesterlé,Polylogarithmes, Séminaire Bourbaki, 45ème année, 1992–1993,n o762.
[31] G. Rhin and C. Viola,On a permutation group related to \(\zeta\)(2), Acta Arithmetica77 (1996), 23–56. · Zbl 0864.11037
[32] B. Riemann,Oeuvres mathématiques, Blanchard, Paris, 1968.
[33] T. Rivoal and W. Zudilin,Diophantine properties of numbers related to Catalan’s constant, Mathematische Annalen326 (2003), 705–721. · Zbl 1028.11046 · doi:10.1007/s00208-003-0420-2
[34] V. N. Sorokin,A transcendence measure for \(\pi\) 2, Matematicheskii Sbornik187:12 (1997), 87–120.
[35] M. Petkovsek, H. Wilf and D. Zeilberger,A=B, A K Peters, Wellesley, Mass., 1996.
[36] W. Zudilin,Arithmetic of linear forms involving odd zeta values, Journal de Théorie des Nombres de Bordeaux16 (2004), 251–291. · Zbl 1156.11327
[37] W. Zudilin,Irrationality of values of the Riemann zeta function, Iszvestya Rossiiskaya Akademiya Nauk, Seriya Matematika66:3 (2002), 49–102.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.