A stochastic spatial dynamical model for Aedes aegypti. (English) Zbl 1142.92028

Summary: We develop a stochastic spatial model for Aedes aegypti populations based on the life cycle of the mosquito and its dispersal. Our validation corresponds to a monitoring study performed in Buenos Aires. Lacking information with regard to the number of breeding sites per block, the corresponding parameter (BS) was adjusted to the data. The model is able to produce numerical data in very good agreement with field results during most of the year, the exception being the fall season.
Possible causes of the disagreement are discussed. We analyzed the mosquito dispersal as an advantageous strategy of persistence in the city and simulated the dispersal of females from a source to the surroundings along a 3-year period observing that several processes occur simultaneously: local extinctions, recolonization processes (resulting from flight and the oviposition performed by flyers), and colonization processes resulting from the persistence of eggs during the winter season. In view of this process, we suggest that eradication campaigns in temperate climates should be performed during the winter time for higher efficiency.


92C60 Medical epidemiology
92D40 Ecology


Full Text: DOI


[1] Andersson, H., Britton, T., 2000. Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics, vol. 151. Springer, Berlin. · Zbl 0951.92021
[2] Arrivillaga, J., Barrera, R., 2004. Food as a limiting factor for aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–0.
[3] Bar-Zeev, M., 1957. The effect of density on the larvae of a mosquito and its influence on fecundity. Bull. Res. Council Israel B 6, 220–28.
[4] Bar-Zeev, M., 1958. The effect of temperature on the growth rate and survival of the immature stages of aedes aegypti. Bull. Entomol. Res. 49, 157–63.
[5] Boyce, R., 1911. Yellow Fever and Its Prevention. E.P. Dutton and Co., New York.
[6] Bugher, J.C., Taylor, M., 1949. Radiophosphorus and radiostrontium in mosquitoes. Preliminary report. Science 110, 146–47.
[7] Calder, L., Laird, M., 1994. Mosquito travellers, arbovirus vectors and the used tyre trade. Travel. Med. Int. 12, 3–2.
[8] Carbajo, A.E., Schweigmann, N., Curto, S.I., de Garín, A., Bejarán, R., 2001. Dengue transmission risk maps of Argentina. Trop. Med. Int. Health 6(3), 170–83.
[9] Carbajo, A.E., Gomez, S.M., Curto, S.I., Schweigmann, N., 2004. Variación espacio temporal del riesgo de transmisión de dengue en la ciudad de Buenos Aires. Medicina 64, 231–34.
[10] Carbajo, A.E., Curto, S.I., Schweigmann, N., 2006. Spatial distribution pattern of oviposition in the mosquito aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector. Med. Vet. Entomol. 20, 209–18.
[11] Chadee, D.D., 1997. Effects of forced egg-retention on the oviposition patterns of female aedes aegypti (diptera:culicidae). Bull. Entomol. Res. 87, 649–51.
[12] Christophers, R., 1960. Aedes aegypti (L.), the Yellow Fever Mosquito. Cambridge Univ. Press, Cambridge.
[13] de Garín, A.B., Bejarán, R.A., Carbajo, A.E., de Casas, S.C., Schweigmann, N.J., 2000. Atmospheric control of aedes aegypti populations in Buenos Aires (Argentina) and its variability. Int. J. Biometerol. 44, 148–56.
[14] Dunn, L.H., 1927. Observations on the oviposition of aedes aegypti linn., in relation to distance from habitations. Bull. Ent. Res. 18, 145–48.
[15] Durrett, R., 1999. Stochastic spatial models. SIAM Rev. 41(4), 677–18. · Zbl 0940.60086
[16] Dye, C., 1982. Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference. Ecol. Entomol. 7, 39–6.
[17] Edman, J.D., Scott, T.W., Costero, A., Morrison, A.C., Harrington, L.C., Clark, G.G., 1998. Aedes aegypti (diptera culicidae) movement influenced by availability of oviposition sites. J. Med. Entomol. 35(4), 578–83.
[18] Ethier, S.N., Kurtz, T.G., 1986. Markov Processes. Wiley, New York.
[19] Fay, R.W., 1964. The biology and bionomics of aedes aegypti in the laboratory. Mosq. News. 24, 300–08.
[20] Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., 1993. Dynamics life table model for aedes aegypti: Analysis of the literature and model development. J. Med. Entomol. 30, 1003–018.
[21] FUNCEI, 1998. Dengue enfermedad emergente. Fund. Estud. Infectol. 1(1), 1–6, http://www.funcei.org.ar.
[22] FUNCEI, 1999a. Dengue enfermedad emergente. Fund. Estud. Infectol. 2(1), 1–12, http://www.funcei.org.ar.
[23] FUNCEI, 1999b. Dengue enfermedad emergente. Fund. Estud. Infectol. 2(2), 1–8, http://www.funcei.org.ar.
[24] Getis, A., Morrison, A.C., Gray, K., Scott, T.W., 2003. Characteristics of the spatial pattern of the dengue vector, aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 69(5), 494–05.
[25] Gleiser, R.M., Urrutia, J., Gorla, D.E., 2000. Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions. Entomol. Exp. Appl. 95, 135–40.
[26] Harrington, L.C., Scott, T.W., Lerdthusnee, K., Coleman, R.C., Costero, A., Clark, G.G., Jones, J.J., Kitthawee, S., Kittayapong, P., Sithiprasasna, R., Edman, J.D., 2005. Dispersal of the dengue vector aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72(2), 209–20.
[27] Honório, N.A., da Costa Silva, W., Leite, P.J., Gonçalvez, J.M., Lounibos, L.P., de Oliveira, R.L., 2003. Dispersal of aedes aegipty and aedes albopictus (dipetera culicidae) in an urban endemic dengue area in the state of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–98.
[28] Horsfall, W.R., 1955. Mosquitoes: Their Bionomics and Relation to Disease. Ronald, New York.
[29] Király, A., Jánosi, I.M., 2002. Stochastic modelling of daily temperature fluctuations. Phys. Rev. E 65, 051102.
[30] Kurtz, T.G., 1970. Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7, 49–8. · Zbl 0191.47301
[31] Kurtz, T.G., 1971. Limit theorems for sequences of jump processes approximating ordinary differential equations. J. Appl. Probab. 8, 344–56. · Zbl 0219.60060
[32] Laird, M., 1989. Vector-borne diseases introduced into new areas due to human movement: a historical perspective. In: Service, M.W. (Ed.), Demography and Vector-Borne Diseases, pp. 17–3. CRC, Boca Raton
[33] Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., 1984. The complex hatching response of aedes eggs to larval density. Ecol. Entomol. 9, 437–42.
[34] McDonald, P.T., 1977. Population characteristics of domestic aedes aegypti (diptera: Culicidae) in villages on the Kenya coast. ii. dispersal within and between villages. J. Med. Entomol. 14(1), 49–3.
[35] Ministerio de Asistencia Social y Salud Publica, A., 1964. Campaña de erradicacion del Aedes aegypti en la República Argentina. Informe final. Buenos Aires.
[36] Morlan, H.B., Hayes, R.O., 1958. Urban dispersal and activity of aedes aegypti. Mosq. News 18, 137–44.
[37] Muir, L.E., Kay, B.H., 1998. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am. J. Trop. Med. Hyg. 58, 277–82.
[38] Nayar, J.K., Sauerman, D.M., 1975. The effects of nutrition on survival and fecundity in Florida mosquitoes. Part 3. utilization of blood and sugar for fecundity. J. Med. Entomol. 12, 220–25.
[39] Ordoñez-Gonzalez, J.G., Mercado-Hernandez, R., Flores-Suarez, A.E., Fernandez-Salas, I., 2001. The use of sticky ovitraps to estimate dispersal of aedes aegypti in northeastern Mexico. J. Am. Mosq. Control Assoc., Inc. 17(2), 93–7.
[40] Otero, M., Solari, H., Schweigmann, N., 2006. A stochastic population dynamic model for aedes aegypti: formulation and application to a city with temperate climate. Bull. Math. Biol. 68, 1945–974. · Zbl 1296.92215
[41] Reiter, P., Amador, M.A., Anderson, R.A., Clark, G.G., 1995. Short report: dispersal of aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 52, 177–79.
[42] Rodhain, F., Rosen, L., 1997. Mosquito vectors and dengue virus-vector relationships. In: Gubler, D.J., Kuno, G. (Eds.), Dengue and Dengue Hemorragic Fever, pp. 61–8. CAB International, New York.
[43] Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., 1990. Temperature-dependent development and survival rates of culex quinquefasciatus and aedes aegypti (diptera: Culicidae). J. Med. Entomol. 27, 892–98.
[44] Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719–31.
[45] Schweigmann, N., Boffi, R., 1998. Aedes aegypti y aedes albopictus: Situación entomológica en la región. In: Temas de Zoonosis y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis y Primer Cong. Argent. y Lationoamer. de Enf. Emerg. y Asociación Argentina de Zoonosis, pp. 259–63, Buenos Aires.
[46] Schweigmann, N., Orellano, P., Kuruc, J., Vera, M.T., Vezzani, D., Méndez, A., 2002. Distribución y abundancia de aedes aegypti (diptera: Culicidae) en la ciudad de Buenos Aires. In: Salomón, D.S. (Ed.), Actualizaciones en Artropodología Sanitaria Argentina, pp. 155–60.
[47] Service, M.W., 1997. Mosquito (diptera: Culicidae) dispersal-the long and short of it. J. Med. Entomol. 34, 579–88.
[48] Shannon, R.C., Burke, A.W., Davis, N.C., 1930. Observations on released stegomyia aegypti (l.) with special reference to dispersion. Am. J. Trop. Med. 10, 145–50.
[49] Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–70.
[50] Solari, H.G., Natiello, M.A., 2003. Stochastic population dynamics: the Poisson approximation. Phys. Rev. E 67, 031918. · Zbl 1318.60084
[51] Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., 1972. Studies on the life budget of aedes aegypti in Wat Samphaya Bangkok Thailand. Bull. W.H.O. 46, 211–26.
[52] Subra, R., Mouchet, J., 1984. The regulation of preimaginal populations of aedes aegypti (l.) (diptera: Culicidae) on the Kenya coast. ii. food as a main regulatory factor. Ann. Trop. Med. Parasitol. 78, 63–0.
[53] Takahashi, L.T., Maidana, N.A., Ferreira, W.C. Jr., Pulino, P., Yang, H.M., 2005. Mathematical models for the aedes aegypti dispersal dynamics: Travelling waves by wing and wind. Bull. Math. Biol. 67, 509–28. · Zbl 1334.92370
[54] Trpis, M., 1972. Dry season survival of aedes aegypti eggs in various breeding sites in the Dar es Salaam area, Tanzania. Bull. W.H.O. 47, 433–37.
[55] Trpis, M., Häusermann, W., 1986. Dispersal and other population parameters of aedes aegypti in an African village and their possible significance in epidemiology of vector-borne-diseases. Am. J. Trop. Med. Hyg. 35, 1263–279.
[56] Tsuda, Y., Takagi, M., Wang, S., Wang, Z., Tang, L., 2001. Movement of aedes aegypti (diptera: Culicidae) released in a small isolated village on Hainan island, China. J. Med. Entomol. 38(1), 93–8.
[57] US Department of Commerce, 2006. National climatic data center, http://www.ncdc.noaa.gov/oa/ncdc.html .
[58] Vezzani, C., Velázquez, S.T., Schweigmann, N., 2004. Seasonal pattern of abundance of aedes aegypti (diptera: Culicidae) in Buenos Aires city, Argentina. Mem. Inst. Oswaldo Cruz 99, 351–56.
[59] WHO, 1998. Dengue hemorrhagic fever. Diagnosis, treatment, prevention and control. World Health Organization, Ginebra, Suiza.
[60] WHO, 2002. Dengue and Dengue hemorrhagic fever. World Health Organization, Ginebra, Suiza.
[61] Wiseman, R.H., Symes, L.B., McMahon, J.C., Teesdale, C., 1939. Report on a malaria survey of Mombasa. Nairobi Government Printer, Nairobi.
[62] Wolfinsohn, M., Galun, R., 1953. A method for determining the flight range of aedes aegypti (linn.). Bull. Res. Council Israel 2, 433–36.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.