zbMATH — the first resource for mathematics

Parallel simulation of particle suspensions with the lattice Boltzmann method. (English) Zbl 1142.76456
Summary: A description of the steps taken to produce a massively parallel code for particle suspension problems using the lattice Boltzmann method is presented. A number of benchmarks based on a binary fluid lattice Boltzmann model are used to assess the performance of the code in terms of the computational overhead required for the particle problem compared with the fluid-only problem, and for the scaling of the code to large processor numbers. On the Blue Gene/L architecture, the additional computational cost of particle suspensions of up to 40% solid volume fraction (here over a million particles) is negligible compared with the fluid-only code.

76M28 Particle methods and lattice-gas methods
Full Text: DOI
[1] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Clarendon Press Oxford · Zbl 0990.76001
[2] Ladd, A.J.C., J. fluid mech., J. fluid mech., 271, 311, (1994)
[3] Ladd, A.J.C., Phys. fluids, Phys. rev. lett., 76, 1392, (1996)
[4] Ladd, A.J.C.; Verberg, R., J. stat. phys., 104, 1191, (2001)
[5] Qi, D.; Qi, D.; Luo, L.-S., J. fluid mech., Phys. fluids, 14, 4440, (2002)
[6] Stratford, K.; Adhikari, R.; Pagonabarraga, I.; Desplat, J.-C., J. stat. phys., 121, 163, (2005)
[7] The OpenMP standard is available from http://www.openmp.org/
[8] The Message Passing Interface standard is available from http://www.mpi-forum.org/
[9] Lucy, L.B.; Gingold, R.A.; Monaghan, J.J., Astrophys. J., Mon. not. R. astron. soc., 181, 375, (1977)
[10] Bhatnagar, P.; Gross, E.P.; Krook, M.K., Phys. rev., 94, 511, (1954)
[11] Qian, Y.H.; d’Humières, D.; Lallemand, P., Europhys. lett., 17, 479, (1992)
[12] d’Humieres, D.; d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S.; Lallemand, P.; Luo, L.-S., Prog. aeronaut. astronaut., Philos. trans. R. soc. lond. ser. A, Phys. rev. E, 61, 6546, (2000)
[13] Heemels, M.W.; Hagen, M.H.J.; Lowe, C.P., J. comput. phys., 164, 48, (2000)
[14] Nguyen, N.-Q.; Ladd, A.J.C., Phys. rev. E, 66, 046708, (2002)
[15] Jeffrey, D.J.; Onishi, Y., J. fluid mech., 139, 261, (1984)
[16] Aidun, C.K.; Lu, Y.; Ding, E.-J., J. fluid mech., 373, 287, (1998)
[17] Allen, M.P; Tildesley, D.J., Computer simulation of fluids, (1987), Oxford University Press · Zbl 0703.68099
[18] Desplat, J.-C.; Pagonabarraga, I.; Bladon, P., Comput. phys. comm., 134, 273, (2001)
[19] Cates, M.E.; Stratford, K.; Adhikari, R.; Stansell, P.; Desplat, J.-C.; Pagonabarraga, I.; Wagner, A.J., J. phys.: condens. matter, 16, S3903, (2004)
[20] Swift, M.R.; Osborn, W.R.; Yeomans, J.M.; Swift, M.R.; Orlandini, E.; Osborn, W.R.; Yeomans, J.M., Phys. rev. lett., Phys. rev. E, 54, 5041, (1996)
[21] Stratford, K.; Adhikari, R.; Pagonabarraga, I.; Desplat, J.-C.; Cates, M.E., Science, 309, 2198, (2005)
[22] Lubachevsky, B.D.; Stillinger, F.H., J. stat. phys., 60, 561, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.