zbMATH — the first resource for mathematics

Data clustering using a reorganizing neural network. (English) Zbl 1142.68474
Summary: A new approach, designed for clustering of arbitrary distributed patterns, is presented. This study is concerned with the use of a self-organizing neural network as a frame for data clustering. The nearest network nodes in feature space are treated as prototypes, assigned to the corresponding cluster. The rules for dead-node shifting and simple adjustment of coordinates of the active nodes are introduced. The performance of the proposed self-organizing neural network is examined on the benchmark synthetic and the real-world problem.

68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI
[1] DOI: 10.1016/0893-6080(90)90071-R · doi:10.1016/0893-6080(90)90071-R
[2] Bezdek J. C., Pattern recognition with fuzzy cbjective function algorithm (1981)
[3] Bishop C. M., Neural networks for pattern recognition (1995) · Zbl 0868.68096
[4] DOI: 10.1016/S0165-0114(96)00232-1 · Zbl 0920.68123 · doi:10.1016/S0165-0114(96)00232-1
[5] DOI: 10.1109/91.580801 · doi:10.1109/91.580801
[6] Duda R. O., Pattern classification and scene analysis (1973) · Zbl 0277.68056
[7] Ferens K., Neural networks applications (1996)
[8] DOI: 10.1016/0893-6080(94)90091-4 · doi:10.1016/0893-6080(94)90091-4
[9] DOI: 10.1109/34.192473 · Zbl 05111845 · doi:10.1109/34.192473
[10] Jang J. R., Neuro-fuzzy and soft computing (1997)
[11] DOI: 10.1109/5.58325 · doi:10.1109/5.58325
[12] DOI: 10.1109/91.227387 · doi:10.1109/91.227387
[13] DOI: 10.1016/0893-6080(94)90109-0 · Zbl 00695981 · doi:10.1016/0893-6080(94)90109-0
[14] DOI: 10.1016/S0165-0114(99)00110-4 · Zbl 1013.68188 · doi:10.1016/S0165-0114(99)00110-4
[15] DOI: 10.1109/3477.790449 · doi:10.1109/3477.790449
[16] DOI: 10.1109/34.85677 · Zbl 05112080 · doi:10.1109/34.85677
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.