zbMATH — the first resource for mathematics

Averaging oscillations with small fractional damping and delayed terms. (English) Zbl 1142.34385
Summary: We demonstrate the method of averaging for conservative oscillators which may be strongly nonlinear, under small perturbations including delayed and/or fractional derivative terms. The unperturbed systems studied here include a harmonic oscillator, a strongly nonlinear oscillator with a cubic nonlinearity, as well as one with a nonanalytic nonlinearity. For the latter two cases, we use an approximate realization of the asymptotic method of averaging, based on harmonic balance. The averaged dynamics closely match the full numerical solutions in all cases, verifying the validity of the averaging procedure as well as the harmonic balance approximations therein. Moreover, interesting dynamics is uncovered in the strongly nonlinear case with small delayed terms, where arbitrarily many stable and unstable limit cycles can coexist, and infinitely many simultaneous saddle-node bifurcations can occur.

34K23 Complex (chaotic) behavior of solutions to functional-differential equations
70K65 Averaging of perturbations for nonlinear problems in mechanics
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C29 Averaging method for ordinary differential equations
34K18 Bifurcation theory of functional-differential equations
Full Text: DOI
[1] G.stépán, ?Delay differential equation models for machine tool chatter?, in Dynamics and Chaos in Manufacturing Processes, F. C. Moon (ed.), Wiley, New York, 1997, pp. 165-191.
[2] Olgac, N., Elmali, H., Hosek, M., and Renzulli, M., ?Active vibration control of distributed systems using delayed resonator with acceleration feedback?, ASME Journal of Dynamic Systems, Measurement, and Control119, 1997, 380-389. · Zbl 0909.73060 · doi:10.1115/1.2801269
[3] Santos, O. and Mondié, S., ?Control laws involving distributed time delays: Robustness of implementation?, in Proceedings of the American Control Conference, Chicago, Illinois, 2000, pp. 2479-2480.
[4] Insperger, T. and Stépán, G., ?Remote control of periodic robot motion?, in Proceedings of the Thirteenth Symposium on Theory and Practice of Robots and Manipulators, Zakopane, Poland, 2000, pp. 197-203. · Zbl 1012.70518
[5] Batzel, J. J. and Tran, H. T., ?Stability of the human respiratory control system I. Analysis of a two-dimensional delay state-space model?, Journal of Mathematical Biology41, 2000, 45-79. · Zbl 0999.92012 · doi:10.1007/s002850000044
[6] Szydlowski, M. and Krawiec, A., ?The Kaldor-Kalecki model of business cycle as a two-dimensional dynamical system?, Journal of Nonlinear Mathematical Physics8, 2001, 266-271. · Zbl 0989.90099 · doi:10.2991/jnmp.2001.8.s.46
[7] Kalmár-Nagy, T., Stépán, G., and Moon, F. C., ?Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations?, Nonlinear Dynamics26, 2001, 121-142. · Zbl 1005.70019 · doi:10.1023/A:1012990608060
[8] Epstein, I. R., ?Delay effects and differential delay equations in chemical kinetics?, International Reviews in Physical Chemistry11(1), 1992, 135-160. · doi:10.1080/01442359209353268
[9] Roussel, M. R., ?Approximate state-space manifolds which attract solutions of systems of delay-differential equations?, Journal of Chemical Physics109(19), 1998, 8154-8160. · doi:10.1063/1.477478
[10] Bagley, R. L. and Torvik, P. J., ?A theoretical basis for the application of fractional calculus to viscoelasticity?, Journal of Rheology27(3), 1983, 201-210. · Zbl 0515.76012 · doi:10.1122/1.549724
[11] Bagley, R. L. and Torvik, P. J., ?Fractional calculus ? a different approach to the analysis of viscoelastically damped structures?, AIAA Journal21(5), 1983, 741-748. · Zbl 0514.73048 · doi:10.2514/3.8142
[12] Bagley, R. L. and Torvik, P. J., ?Fractional calculus in the transient analysis of viscoelastically damped structures?, AIAA Journal23(6), 1985, 918-925. · Zbl 0562.73071 · doi:10.2514/3.9007
[13] Koeller, R. C., ?Application of fractional calculus to the theory of viscoelasticity?, ASME Journal of Applied Mechanics51, 1984, 299-307. · Zbl 0544.73052 · doi:10.1115/1.3167616
[14] Kevorkian, J. and Cole, J. D., Multiple Scales and Singular Perturbation Methods, Springer-Verlag, New York, 1996. · Zbl 0846.34001
[15] Plaut, R. H. and Hseih, J. C., ?Nonlinear structural vibrations involving a time delay in damping?, Journal of Sound and Vibration117(3), 1987, 497-510. · Zbl 1235.74108 · doi:10.1016/S0022-460X(87)80068-8
[16] Hu, H., Dowell, E. H., and Virgin, L. N., ?Resonances of a harmonically forced duffing oscillator with time delay state feedback?, Nonlinear Dynamics15, 1998, 311-327. · Zbl 0906.34052 · doi:10.1023/A:1008278526811
[17] Maccari, A., ?The response of a parametrically excited van der Pol oscillator to a time delay state feedback?, Nonlinear Dynamics26, 2001, 105-119. · Zbl 1018.93015 · doi:10.1023/A:1012932605171
[18] Li, G., Zhu, Z., and Cheng, C., ?Dynamical stability of viscoelastic column with fractional derivative constitutive relation?, Applied Mathematics and Mechanics22(3), 2001, 294-303. · Zbl 1116.74364 · doi:10.1023/A:1015506420053
[19] Sanders, J. A. and Verhulst, F., Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York, 1985. · Zbl 0586.34040
[20] Rossikhin, Y. A. and Shitikova, M. V., ?Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges?, Journal of Engineering Mechanics124(9), 1998, 1029-1036. · doi:10.1061/(ASCE)0733-9399(1998)124:9(1029)
[21] Chatterjee, A., ?Harmonic balance based averaging: Approximate realizations of an asymptotic technique?, Nonlinear Dynamics32, 2003, pp. 323-343. · Zbl 1042.70017 · doi:10.1023/A:1025645620615
[22] Oldham, K. B. and Spanier, J., The Fractional Calculus ? Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974. · Zbl 0292.26011
[23] Koh, C. G. and Kelly, J. M., ?Application of fractional derivatives to seismic analysis of base-isolated models?, Earthquake Engineering and Structural Dynamics19, 1990, 229-241. · doi:10.1002/eqe.4290190207
[24] Yuan, L. and Agrawal, O. P., ?A numerical scheme for dynamic systems containing fractional derivatives?, in Proceedings of 1998 ASME Design Engineering Technical Conferences, Atlanta, Georgia, September 13-16, 1998.
[25] Suarez, L. E. and Shokooh, A., ?An eigenvector expansion method for the solution of motion containing fractional derivatives?, ASME Journal of Applied Mechanics64(3), 1997, 629-635. · Zbl 0905.73022 · doi:10.1115/1.2788939
[26] Rand, R.H., Lecture Notes on Nonlinear Vibrations, version 36. Available online at http://tam.cornell.edu/randdocs/ nlvibe36.pdf, 2001.
[27] Verhulst, F., Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, 1990. · Zbl 0685.34002
[28] Coppola, V. T. and Rand, R. H., ?Averaging using elliptic functions : Approximation of limit cycles?, Acta Mechanica81, 1990, pp. 125-142. · Zbl 0699.34032 · doi:10.1007/BF01176982
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.