zbMATH — the first resource for mathematics

Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence. (English) Zbl 1142.34384
Summary: In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Lyapunov-LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence.

34K20 Stability theory of functional-differential equations
92D30 Epidemiology
PDF BibTeX Cite
Full Text: DOI
[1] Anderson, R.M.; May, R.M., Infectious disease of humans, dynamical and control, (1992), Oxford University Press Oxford
[2] Anderson, R.M.; May, R.M., Regulation and stability of host – parasite population interactions II: destabilizing process, J anim ecol, 47, 219-267, (1978)
[3] Sun C, Lin Y, Tang S. Global stability for an special SEIR epidemic model with nonlinear incidence rates. Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2005.12.028. · Zbl 1152.34357
[4] Bai, Y.; Jin, Z., Prediction of SARS epidemic by BP neural networks with online predictin strategy, Chaos, solitons & fractals, 26, 559-569, (2005) · Zbl 1065.92037
[5] Kermark, M.D.; Mckendrick, A.G., Contributions to the mathematical theory of epidemics, Part I proc roy soc A, 115, 700-721, (1927) · JFM 53.0517.01
[6] Diekmann, O.; Heesterbeek, J.A.P., Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, (2000), John Wiley & Sons Chichester, New York · Zbl 0997.92505
[7] Anderson, R.M.; May, R.M., Population biology of infectious diseases: part I, Nature, 280, 361-367, (1979)
[8] Capasso, V., Mathematical structures of epidemic systems, Lecture notes in biomathematics, Vol. 97, (1993), Springer Berlin · Zbl 0798.92024
[9] Ma, Z.; Zhou, Y.; Wang, W.; Jin, Z., Mathematical modelling and research of epidemic dynamical systems, (2004), Science Press Beijing
[10] Thieme, H.R., Uniform persistence and permanence for nonautonomous semiflows in population biology, Math biosci, 166, 173-201, (2000) · Zbl 0970.37061
[11] Qiu, L.; Mitsui, T., Predator-prey dynamics with delay when prey dispersing in n-patch environment, Japan J ind appl math, 20, 37-49, (2003) · Zbl 1018.92032
[12] Teng, Z.; Chen, L., Uniform persistence and existence of strictly positive solutions in nonautonomous Lotka-Volterra competitive systems with delays, Comput math appl, 37, 61-71, (1999) · Zbl 0942.34061
[13] Teng, Z.; Li, Z., Permanence and asymptotic behavior of the N-species nonautonomous Lotka-Volterra competitive systems, Comput math appl, 39, 107-116, (2000) · Zbl 0959.34039
[14] Teng, Z.; Yu, Y., The extinction in nonautonomous prey-predator lotka – volterra systems, Acta math appl sin, 15, 401-408, (1999) · Zbl 1007.92031
[15] Teng, Z.; Chen, L., Permanence and extinction of periodic predator – prey systems in a patchy environment with delay, Nonlinear anal: RWA, 4, 335-364, (2003) · Zbl 1018.92033
[16] Mena-Lorca, J.; Hethcote, H.W., Dynamic models of infectious diseases as regulators of population biology, J math biol, 30, 693-716, (1992) · Zbl 0748.92012
[17] Thieme, H.R., Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math biosci, 111, 99-130, (1992) · Zbl 0782.92018
[18] Wang, W.; Ruan, S., Bifurcations in an epidemic model with constant removal rate of the infectives, J math anal appl, 291, 774-793, (2004) · Zbl 1054.34071
[19] Brauer, F.; van den Driessche, P., Models for transmission of disease with immigration of infectives, Math biosci, 171, 143-154, (2001) · Zbl 0995.92041
[20] Brauer, F., Epidemic models in populations of varying size, () · Zbl 0684.92016
[21] Gao, L.Q.; Hethcote, H.W., Disease transmission models with density-dependent demographics, J math biol, 30, 717-731, (1992) · Zbl 0774.92018
[22] Greenhalgh, D., Some threshold and stability results for epidemic models with a density dependent death rate, Theor pop biol, 42, 130-151, (1992) · Zbl 0759.92009
[23] Bremermann, H.J.; Thieme, H.R., A competitive exclusion principle for pathogen virulence, J math biol, 27, 179-190, (1989) · Zbl 0715.92027
[24] Hethcote, H.W.; van den Driessche, P., Some epidemiological models with nonlinear incidence, J math biol, 29, 271-287, (1991) · Zbl 0722.92015
[25] Gakkhar S, Negi K. Pulse vaccination SIRS epidemic model with non monotonic incidence rate. Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2006.05.054. · Zbl 1131.92052
[26] Pang G, Chen L. A delayed SIRS epidemic model with pulse vaccination. Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2006.04.061. · Zbl 1152.34379
[27] Li, G.; Jin, Z., Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period, Chaos, solitons & fractals, 25, 1177-1184, (2005) · Zbl 1065.92046
[28] Li, G.; Jin, Z., Global stability of an SEI epidemic model with general contact rate, Chaos, solitons & fractals, 23, 997-1004, (2005) · Zbl 1062.92062
[29] Wang, W.; Ruan, S., Dynamical behavior of an epidemic model with a nonlinear incidence rate, J differ equations, 188, 135-163, (2003) · Zbl 1028.34046
[30] Cooke, K.L.; Van Den Driessche, P., Analysis of an SEIRS epidemic model with two delays, J math biol, 35, 240-260, (1996) · Zbl 0865.92019
[31] Hale, J.K., Theory of functional differential equations, (1977), Springer-Verlag New York · Zbl 0425.34048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.