# zbMATH — the first resource for mathematics

The estimation of the strength of the heat source in the heat conduction problems. (English) Zbl 1141.80010
The determination of the timewise-strength of a heat source in the non-Fourier heat conduction from boundary Cauchy data is investigated. The uniqueness of solution is not addressed.
Reviewer’s remark: There are many English mistakes in the paper. Equations (4), (21) and (27) are already included in equations (5), (22) and (28), respectively. Equation (42) is incomplete. The initial temperature $$T_0(x)$$ is not specified in Section 6 unfortunately.

##### MSC:
 80A23 Inverse problems in thermodynamics and heat transfer
##### Software:
IMSL Numerical Libraries
Full Text:
##### References:
 [1] Huang, C.H.; Ozisik, M.N., Inverse problem of determining the unknown strength of an internal plate heat source, J. franklin inst., 329, 751-764, (1992) · Zbl 0789.65089 [2] Yang, C.Y., Noniterative solution of inverse heat conduction problems in one dimension, Commun. numer. method eng., 13, 419-427, (1997) · Zbl 0884.65095 [3] Yang, C.Y., A sequential method to estimate the strength of the heat source based on symbolic computation, Int. J. heat mass transfer, 41, 2245-2252, (1998) · Zbl 0921.73261 [4] Yang, C.Y., The determination of two heat sources in an inverse heat conduction problem, Int. J. heat mass transfer, 42, 345-356, (1999) · Zbl 0954.65076 [5] Yang, C.Y., Solving the two dimensional inverse heat source problem through the linear least-squares error method, Int. J. heat mass transfer, 41, 393-398, (1998) · Zbl 0925.73047 [6] Silva Neto, A.J.; Ozisik, M.N., Inverse problem of simultaneously estimating the time-varying strengths of two plane heat sources, J. appl. phys., 73, 2132-2137, (1993) [7] Le Niliot, C.; Lefevre, F., A method for multiple steady line heat sources identification in a diffusive system: application to an experimental 2D problem, Int. J. heat mass transfer, 44, 1425-1438, (2001) · Zbl 0979.80006 [8] Le Niliot, C.; Lefevre, F., Multiple transient point heat sources identification in heat diffusion: application to numerical 2D and 3D problems, Numer. heat transfer, part B, 39, 277-301, (2001) · Zbl 0979.80006 [9] Lefevre, F.; Le Niliot, C., The BEM for point heat source estimation: application to multiple static sources and moving sources, Int. J. therm. sci., 41, 536-545, (2002) [10] Lefevre, F.; Le Niliot, C., Multiple transient point heat sources identification in heat diffusion: application to experimental 2D problems, Int. J. heat mass transfer, 45, 1951-1964, (2002) [11] Khachfe, R.A.; Jarny, Y., Determination of heat sources and heat transfer coefficient for two-dimensional heat flow-numerical and experimental study, Int. J. heat mass transfer, 44, 1309-1322, (2001) · Zbl 0979.80005 [12] Lor, W.B.; Chu, H.S., Effect of interface thermal resistance on heat transfer in a composite medium using the thermal wave model, Int. J. heat mass transfer, 43, 653-663, (2000) · Zbl 1112.74372 [13] Antaki, P.J., Importance of nonfourier heat conduction in solid-phase reactions, Combust. flame, 112, 329-341, (1998) [14] Sanderson, T.; Ume, C.; Jarzynski, J., Hyperbolic heat equations in laser generated ultrasound models, Ultrasonics, 33, 415-421, (1995) [15] Liu, L.H.; Tan, H.P.; Tong, T.W., Non-Fourier effects on transient temperature response in semitransparent medium caused by laser pulse, Int. J. heat mass transfer, 44, 3335-3344, (2001) · Zbl 1013.80011 [16] Mullis, A.M., Rapid solidification and a finite velocity for the propagation of heat, Mater. sci. eng., A226-A228, 28-32, (1997) [17] Mullis, A.M., Rapid solidification within the framework of a hyperbolic conduction model, Int. J. heat mass transfer, 40, 4085-4094, (1997) · Zbl 0921.76177 [18] Ranjit, K.S.; Wilfried, R., Hyperbolic axial dispersion model for heat exchangers, Int. J. heat mass transfer, 45, 1261-1270, (2002) · Zbl 1121.76382 [19] Wilfried, R.; Sarit, K.D., Hyperbolic axial dispersion model: concept and its application to a plate heat exchanger, In. J. heat mass transfer, 38, 3065-3076, (1995) [20] Wilfried, R.; Chakkrit, N.R., Consideration of maldistributation in heat exchangers using the hyperbolic dispersion model, Chem. eng. process., 38, (1999) [21] Lin, J.Y., The non-Fourier effect on the fin performance under periodic thermal conditions, Appl. math. modell., 22, 629-640, (1998) [22] Bishri, A.H., Modelling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform, Appl. math. modell., 23, 899-914, (1999) · Zbl 0934.35083 [23] Tang, D.W.; Araki, N., Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance, Int. J. heat mass transform, 39, 1585-1590, (1996) · Zbl 0964.74501 [24] Tan, Z.M.; Yang, W.J., Propagation of thermal waves in transient heat conduction in a thin film, J. franklin inst., 336B, 185-197, (1999) · Zbl 1051.80500 [25] Tan, Z.M.; Yang, W.J., Heat transfer during asymmetrical collision of thermal waves in a this film, Int. J. heat mass transfer, 40, 3999-4006, (1997) · Zbl 0921.73034 [26] Weber, C., Analysis and solution of the ill-posed inverse heat conduction problem, Int. heat mass transfer, 24, 783-1791, (1981) [27] Nehad, A.K., On the solution of parabolic and hyperbolic inverse heat conduction problems, Int. J. heat mass transfer, 41, 3731-3740, (1998) · Zbl 0934.74004 [28] Nehad, A.K., Analysis of boundary inverse heat conduction problems using space marching with savitzky – gollay digital filter, Int. commun. heat mass transfer, 26, 199-208, (1999) [29] Chen, H.T.; Peng, S.Y.; Fang, L.C., Numerical method for hyperbolic inverse heat conduction problems, Int. commun. heat mass transfer, 28, 847-856, (2001) [30] Yang, C.Y., Direct and inverse solutions of the hyperbolic heat conduction problems, AIAA J. thermophys. heat transfer, 19, 217-225, (2005) [31] Yang, C.Y., Estimation of the periodic thermal conditions on the non-Fourier fin problem, Int. J. heat mass transfer, 48, 3506-3515, (2005) · Zbl 1189.80042 [32] Beck, J.V.; Blackwell, B.; Clair, C.R.St., Inverse heat conduction-ill posed problem, (1985), Wiley New York [33] Yang, C.Y., Determination of temperature dependent thermophysical properties from temperature responses measured ad medium’s boundaries, Int. J. heat mass transfer, 43, 1261-1270, (2000) · Zbl 0962.80003 [34] Yang, C.Y., Estimation of boundary conditions in nonlinear inverse heat conduction problems, AIAA J. thermophys. heat transfer, 17, 389-395, (2003) [35] Carey, G.F.; Tsai, M., Hyperbolic heat transfer with reflection, Numer. heat transfer, 5, 309-327, (1982) [36] Carnahan, B.; Luther, H.A.; Wilkes, J.O., Applied numerical methods, (1977), John Wiley & Sons Inc New York [37] Tikhonov, A.N.; Arsenin, V.Y., Solutions of ill-posed problems, (1977), Winston Washington, DC · Zbl 0354.65028 [38] Frank, N.; Wolfe, P., An algorithm for quadratic programming, Naval res. log. quart., 3, 95-110, (1956) [39] User’s Manual: Math Library Version 1.0, IMSL Library Edition 10.0, IMSL, Houston, TX, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.