×

zbMATH — the first resource for mathematics

Structure of turbulent flow over regular arrays of cubical roughness. (English) Zbl 1141.76399
Summary: The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.

MSC:
76F10 Shear flows and turbulence
76M20 Finite difference methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112095003351 · Zbl 0849.76030
[2] DOI: 10.1017/S0022112069000619
[3] DOI: 10.1007/s10546-006-9076-2
[4] DOI: 10.1063/1.1761356
[5] DOI: 10.1023/A:1016060103448
[6] DOI: 10.1007/s10546-005-5747-7
[7] DOI: 10.1016/S0376-0421(01)00009-4
[8] DOI: 10.1146/annurev.fl.13.010181.002325
[9] DOI: 10.1146/annurev.fluid.30.1.539 · Zbl 1398.76073
[10] DOI: 10.1017/S002211207400190X
[11] DOI: 10.1063/1.1343480 · Zbl 1184.76351
[12] DOI: 10.1017/S0022112088001818 · Zbl 0643.76066
[13] DOI: 10.1017/S0022112003005500 · Zbl 1063.76576
[14] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503
[15] DOI: 10.1016/j.ijheatfluidflow.2004.02.022
[16] Adrian, Turbulence in Liquids pp 323– (1975)
[17] DOI: 10.1017/S0022112092000594
[18] DOI: 10.1115/1.1366680
[19] DOI: 10.1007/s003480050370
[20] DOI: 10.1017/S0022112094002661
[21] DOI: 10.1017/S0022112005003824 · Zbl 1152.76308
[22] DOI: 10.1017/S002211209900467X · Zbl 0946.76030
[23] DOI: 10.1017/S0022112067001740
[24] DOI: 10.1007/s001620050144 · Zbl 1020.76024
[25] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071
[26] DOI: 10.1017/S0022112072000515
[27] DOI: 10.1017/S0022112071002490
[28] Townsend, The Structure of Turbulent Shear Flow. (1976) · Zbl 0325.76063
[29] DOI: 10.1063/1.1736675 · Zbl 1186.76239
[30] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514
[31] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025
[32] DOI: 10.1002/qj.49709741404
[33] DOI: 10.1146/annurev.fluid.36.050802.122103 · Zbl 1125.76348
[34] Tennekes, A First Course in Turbulence. (1972)
[35] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007
[36] DOI: 10.1017/S0022112005004453 · Zbl 1102.76020
[37] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050
[38] DOI: 10.1017/S0022112081002279 · Zbl 0482.76053
[39] DOI: 10.1023/A:1020868132429
[40] DOI: 10.1175/JPO-2673.1
[41] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032
[42] DOI: 10.1007/BF00708816
[43] Grass, AIAA J. 31 pp 837– (1993)
[44] DOI: 10.1017/S0022112092002696 · Zbl 0825.76311
[45] DOI: 10.1098/rsta.1991.0065
[46] DOI: 10.1146/annurev.fl.23.010191.003125
[47] DOI: 10.1017/S0022112071002556
[48] DOI: 10.1007/BF00120941
[49] Gad-el-Hak, Passive, Active and Reactive Flow Management (2000) · Zbl 0968.76001
[50] Raupach, Appl. Mech. Rev. 44 pp 1– (1991)
[51] DOI: 10.1023/A:1002618621171
[52] DOI: 10.1017/S0022112081002164 · Zbl 0466.76049
[53] DOI: 10.1146/annurev.fluid.32.1.519 · Zbl 0992.76040
[54] Pope, Turbulent Flows. (2000) · Zbl 0966.76002
[55] DOI: 10.1017/S0022112099005911 · Zbl 0944.76523
[56] DOI: 10.1017/S002211208600304X · Zbl 0597.76052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.