×

zbMATH — the first resource for mathematics

Large-scale features in turbulent pipe and channel flows. (English) Zbl 1141.76316
Summary: In recent years there has been significant progress made towards understanding the large-scale structure of wall-bounded shear flows. Most of this work has been conducted with turbulent boundary layers, leaving scope for further work in pipes and channels. In this article the structure of fully developed turbulent pipe and channel flow has been studied using custom-made arrays of hot-wire probes. Results reveal long meandering structures of length up to 25 pipe radii or channel half-heights. These appear to be qualitatively similar to those reported in the log region of a turbulent boundary layer. However, for the channel case, large-scale coherence persists further from the wall than in boundary layers. This is expected since these large-scale features are a property of the logarithmic region of the mean velocity profile in boundary layers and it is well-known that the mean velocity in a channel remains very close to the log law much further from the wall. Further comparison of the three turbulent flows shows that the characteristic structure width in the logarithmic region of a boundary layer is at least 1.6 times smaller than that in a pipe or channel.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112095003351 · Zbl 0849.76030 · doi:10.1017/S0022112095003351
[2] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[3] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057 · doi:10.1017/S0022112082001311
[4] DOI: 10.1063/1.870250 · Zbl 1149.76503 · doi:10.1063/1.870250
[5] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[6] Moin, Tech. Rep. pp 100022– (1987)
[7] DOI: 10.1017/S0022112005005872 · Zbl 1119.76304 · doi:10.1017/S0022112005005872
[8] DOI: 10.1063/1.1343480 · Zbl 1184.76351 · doi:10.1063/1.1343480
[9] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[10] DOI: 10.1017/S0022112094002661 · doi:10.1017/S0022112094002661
[11] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[12] DOI: 10.1017/S0022112070000629 · doi:10.1017/S0022112070000629
[13] DOI: 10.1017/S0022112002003270 · Zbl 1032.76500 · doi:10.1017/S0022112002003270
[14] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[15] DOI: 10.1017/S0022112007006799 · Zbl 1118.76007 · doi:10.1017/S0022112007006799
[16] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[17] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[18] DOI: 10.1063/1.1608010 · Zbl 1186.76600 · doi:10.1063/1.1608010
[19] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[20] DOI: 10.1017/S002211208600304X · Zbl 0597.76052 · doi:10.1017/S002211208600304X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.