×

zbMATH — the first resource for mathematics

Variational approach to solitary wave solution of the generalized Zakharov equation. (English) Zbl 1141.65391
Summary: The semi-inverse method is applied to search for the solitary wave solution of the generalized Zakharov equation. The solution process reveals that the method is easy and straightforward.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Malomed, B.; Anderson, D.; Lisak, M.; Quiroga-Teixeiro, M.L., Dynamics of solitary waves in the Zakharov model equations, Phys. rev. E, 55, 962-968, (1977)
[2] Zakharov, V.E., Collapse of Langmuir waves, Zh. eksp. teor. fiz., 62, 1745-1751, (1972)
[3] Huang, W.H., A polynomial expansion method and its application in the coupled zakharov – kuznetsov equations, Chaos solitons fractals, 29, 2, 365-371, (2006) · Zbl 1147.35347
[4] Xu, G., The soliton solutions, dromions of the kadomtsev – petviashvili and jimbo – miwa equations in (3+1)-dimensions, Chaos solitons fractals, 30, 1, 71-76, (2006) · Zbl 1141.35444
[5] Zhao, H.; Bai, C.L., New doubly periodic and multiple soliton solutions of the generalized (3+1)-dimensional kadomtsev – petviashvilli equation with variable coefficients, Chaos solitons fractals, 30, 1, 217-226, (2006) · Zbl 1141.35445
[6] Ding, H.Y.; Sun, Y.P.; Xu, X.X., A hierarchy of nonlinear lattice soliton equations, its integrable coupling systems and infinitely many conservation laws, Chaos solitons fractals, 30, 1, 227-234, (2006) · Zbl 1144.37452
[7] Konar, S.; Mishra, M.; Jana, S., The effect of quintic nonlinearity on the propagation characteristics of dispersion managed optical solitons, Chaos solitons fractals, 29, 4, 823-828, (2006) · Zbl 1142.78318
[8] Uthayakumar, A.; Han, Y.G.; Lee, S.B., Soliton solutions of coupled inhomogeneous nonlinear schrodinger equation in plasma, Chaos solitons fractals, 29, 4, 916-919, (2006) · Zbl 1142.35608
[9] Moslem, W.M., Dust-ion-acoustic solitons and shocks in dusty plasmas, Chaos solitons fractals, 28, 4, 994-999, (2006) · Zbl 1096.37055
[10] Wazwaz, A.M., Compactons, solitons and periodic solutions for some forms of nonlinear klein – gordon equations, Chaos solitons fractals, 28, 4, 1005-1013, (2006) · Zbl 1099.35125
[11] de Oliveira, G.I.; Rizzato, F.B., Nonlinear spatiotemporal stability of solitons against external perturbations, Chaos solitons fractals, 28, 5, 1347-1355, (2006) · Zbl 1147.35354
[12] Ye, J.F.; Zheng, C.L.; Xie, L.S., Exact solutions and localized excitations of general nizhnik – novikov – veselov system in (2+1)-dimensions via a projective approach, Int. J. nonlinear sci. numer. simul., 7, 2, 203-208, (2006)
[13] He, J.H.; Wu, X.H., Exp-function method for nonlinear wave equations, Chaos solitons fractals, 30, 3, 700-708, (2006) · Zbl 1141.35448
[14] He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos solitons fractals, 26, 3, 695-700, (2005) · Zbl 1072.35502
[15] He, J.H.; Wu, X.H., Construction of solitary solution and compacton-like solution by variational iteration method, Chaos solitons fractals, 29, 1, 108-113, (2006) · Zbl 1147.35338
[16] He, J.H., Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. meth. appl. mech. eng., 167, 12, 69-73, (1998) · Zbl 0932.65143
[17] He, J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. meth. appl. mech. eng., 167, 12, 57-68, (1998) · Zbl 0942.76077
[18] He, J.H., Variational iteration method—a kind of non-linear analytical technique: some examples, Int. J. nonlinear mech., 34, 4, 699-708, (1999) · Zbl 1342.34005
[19] Odibat, Z.M.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. nonlinear sci. numer. simul., 7, 1, 27-34, (2006) · Zbl 1401.65087
[20] Bildik, N.; Konuralp, A., The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Int. J. nonlinear sci. numer. simul., 7, 1, 65-70, (2006) · Zbl 1401.35010
[21] Momani, S.; Abuasad, S., Application of he’s variational iteration method to Helmholtz equation, Chaos solitons fractals, 27, 5, 1119-1123, (2006) · Zbl 1086.65113
[22] D’Acunto, M., Self-excited systems: analytical determination of limit cycles, Chaos solitons fractals, 30, 3, 719-724, (2006) · Zbl 1142.70010
[23] D’Acunto, M., Determination of limit cycles for a modified van der Pol oscillator, Mech. res. comm., 33, 1, 93-98, (2006) · Zbl 1192.70026
[24] He, J.H., Some asymptotic methods for strongly nonlinear equations, Internat. J. modern phys. B, 20, 10, 1141-1199, (2006) · Zbl 1102.34039
[25] J.H. He, Non-perturbative methods for strongly nonlinear problems, Berlin: dissertation.de-Verlag im Internet GmbH, 2006
[26] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos solitons fractals, 19, 4, 847-851, (2004) · Zbl 1135.35303
[27] He, J.H., Variational theory for one-dimensional longitudinal beam dynamics, Phys. lett. A, 352, 4-5, 276-277, (2006) · Zbl 1187.74108
[28] He, J.H., Variational approach to (2+1)-dimensional dispersive long water equations, Phys. lett. A, 335, 2-3, 182-184, (2005) · Zbl 1123.37319
[29] Zhang, J.; Yu, J.Y.; Pan, N., Variational principles for nonlinear fiber optics, Chaos solitons fractals, 24, 1, 309-311, (2005) · Zbl 1135.78330
[30] Liu, H.M., Generalized variational principles for ion acoustic plasma waves by he’s semi-inverse method, Chaos solitons fractals, 23, 2, 573-576, (2005) · Zbl 1135.76597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.