×

zbMATH — the first resource for mathematics

Consistent linear model selection. (English) Zbl 1141.62333
Summary: We derive the rate of divergence of the penalty term for consistent model selection in linear regression models under a general error structure.

MSC:
62J05 Linear regression; mixed models
62F12 Asymptotic properties of parametric estimators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akaike, H., Statistical predictor identification, Ann. inst. statist. math., 22, 203-217, (1970) · Zbl 0259.62076
[2] Eubank, R.L., Spline smoothing and nonparametric regression, (1999), Dekker New York · Zbl 0936.62044
[3] Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, J. amer. statist. assoc., 96, 1348-1360, (2001) · Zbl 1073.62547
[4] Lehmann, E.L.; Caeslla, G., Theory of point estimation, (1998), Springer New York
[5] Mallows, C.L., Some comments on \(C_p\), Technometrics, 15, 661-675, (1973) · Zbl 0269.62061
[6] Rao, C.R.; Wu, Y., A strongly consistent procedure for model selection in a regression problem, Biometrika, 76, 369-374, (1989) · Zbl 0669.62051
[7] Schwarz, G., Estimating the dimension of a model, Ann. statist., 6, 461-464, (1978) · Zbl 0379.62005
[8] Shao, J., An asymptotic theory for linear model selection, Statist. sinica, 7, 221-264, (1997) · Zbl 1003.62527
[9] Shi, P.; Tsai, C., Regression model selection—a residual likelihood approach, J. roy. statist. soc. ser. B, 64, 237-252, (2002) · Zbl 1059.62074
[10] Whittle, P., Bounds for the moments of linear and quadratic forms in independent variables, Theory probab. appl., 5, 302-305, (1960)
[11] Zheng, X.; Loh, W., A consistent variable selection criterion for linear models with high-dimensional covariates, Statist. sinica, 7, 311-325, (1997) · Zbl 0880.62068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.