×

Personal report : Gene Howard Golub, 1932–2007. (English) Zbl 1140.65302


MSC:

65-03 History of numerical analysis
01A60 History of mathematics in the 20th century
01A70 Biographies, obituaries, personalia, bibliographies

Biographic References:

Golub, Gene Howard
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bai, Z.-Z.; Golub, G. H.; Ng, M. K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 3, 603-626 (2003) · Zbl 1036.65032
[2] Bartels, R. H.; Golub, G. H., The Simplex method of linear programming using LU decomposition, Commun. ACM, 12, 266-268 (1969) · Zbl 0181.19104
[3] Björck, Å.; Golub, G. H., Numerical methods for computing angles between linear subspaces, Math. Comput., 27, 579-594 (1973) · Zbl 0282.65031
[4] Buzbee, B. L.; Golub, G. H.; Nielson, C. W., On direct methods for solving Poisson’s equation, SIAM J. Numer. Anal., 7, 627-656 (1970) · Zbl 0217.52902
[5] Calvetti, D.; Golub, G. H.; Gragg, W. B.; Reichel, L., Computation of Gauss-Kronrod quadrature rules, J. Math. Comput., 69, 231, 1035-1052 (2000) · Zbl 0947.65022
[6] (Chan, R. H.; Greif, C.; O’Leary, D. P., Milestones in Matrix Computation: Selected Works of Gene H. Golub, with Commentaries (2007), Oxford University Press)
[7] P. Concus, G.H. Golub, A generalized conjugate gradient method for nonsymmetric systems of linear equations, in: Second International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, France, December 15-19, 1975.; P. Concus, G.H. Golub, A generalized conjugate gradient method for nonsymmetric systems of linear equations, in: Second International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, France, December 15-19, 1975. · Zbl 0344.65020
[8] Concus, P.; Golub, G. H.; O’Leary, D. P., A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, (Proceedings of Sparse Matrix Conference, Sparse Matrix Computation (1976), Academic Press Inc.), 309-332 · Zbl 0385.65048
[9] de Boor, C.; Golub, G. H., The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl., 21, 245-260 (1978) · Zbl 0388.15010
[10] J. Dongarra, G. Golub, C. Moler, K. Moore, Netlib and NA-Net: building a scientific computing community, IEEE Ann. History Comput., in press.; J. Dongarra, G. Golub, C. Moler, K. Moore, Netlib and NA-Net: building a scientific computing community, IEEE Ann. History Comput., in press.
[11] Elhay, S.; Golub, G. H.; Kautsky, J., Updating and downdating of orthogonal polynomials with data fitting applications, SIAM J. Matrix Anal. Appl., 12, 2, 327-353 (1991) · Zbl 0728.65010
[12] Giladi, E.; Golub, G. H.; Keller, J. B., Inner and outer iterations for the Chebyshev algorithm, SIAM J. Numer. Anal., 35, 1, 300-319 (1998) · Zbl 0911.65024
[13] Gill, P. E.; Golub, G. H.; Murray, W.; Saunders, M. A., Methods for modifying matrix factorizations, Math. Comput., 28, 505-535 (1974) · Zbl 0289.65021
[14] Golub, G. H., Numerical methods for solving linear least squares problems, Numer. Math., 7, 206-216 (1965) · Zbl 0142.11502
[15] Golub, G. H., Some modified matrix eigenvalue problems, SIAM Rev., 15, 318-335 (1973) · Zbl 0254.65027
[16] Golub, G. H.; Heath, M.; Wahba, G., Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21, 2, 215-223 (1979) · Zbl 0461.62059
[17] Golub, G. H.; Kahan, W., Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal. 2, Ser. B, 205-224 (1965) · Zbl 0194.18201
[18] Golub, G. H.; Meurant, G., Matrices, moments and quadrature, (Proceedings of the 15th Dundee Conference, June-July 1993 (1994), Longman Scientific & Technical) · Zbl 0888.65050
[19] Golub, G. H.; Milanfar, P.; Varah, J., A stable numerical method for inverting shape from moments, SIAM J. Sci. Comput., 21, 4, 1222-1243 (1999/2000) · Zbl 0956.65030
[20] Golub, G. H.; Pereyra, V., The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal., 10, 413-432 (1973) · Zbl 0258.65045
[21] Golub, G. H.; Reinsch, C., Singular value decomposition and least squares solutions, Numer. Math., 14, 403-420 (1970) · Zbl 0181.17602
[22] Golub, G. H.; Underwood, R., The block Lanczos method for computing eigenvalues, (Proceedings of the Symposium on Mathematical Software (1977), University of Wisconsin: University of Wisconsin Madison, WI) · Zbl 0407.68040
[23] Golub, G. H.; Van Loan, C. F., Matrix Computations (1983), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD, 1989 (second edition), 1996 (third edition). · Zbl 0559.65011
[24] Golub, G. H.; Van Loan, C. F., An analysis of the total least squares problem, SIAM J. Numer. Anal., 17, 6, 883-893 (1980) · Zbl 0468.65011
[25] Golub, G. H.; Varga, R. S., Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second-order Richardson iterative methods, Parts I and II, Numer. Math., 3, 147-168 (1961) · Zbl 0099.10903
[26] Golub, G. H.; Wathen, A. J., An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput., 19, 2, 530-539 (1998) · Zbl 0912.76053
[27] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comput., 23, 221-230 (1969) · Zbl 0179.21901
[28] Golub, G. H.; Wilkinson, J. H., Ill-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Rev., 18, 578-619 (1976) · Zbl 0341.65027
[29] N.J. Higham, Photograph, July 2005.; N.J. Higham, Photograph, July 2005.
[30] G.W. Stewart, Private communication, November 13, 2007.; G.W. Stewart, Private communication, November 13, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.