zbMATH — the first resource for mathematics

Stepanov-like almost automorphic functions and monotone evolution equations. (English) Zbl 1140.34399
Summary: We are concerned with a (new) class of (Stepanov-like) almost automorphic (\(S^p\)-a.a.) functions with values in a Banach space \(X\). This class contains the space \(AA(X)\) of all (Bochner) almost automorphic functions. We use the results obtained to prove the existence and uniqueness of a weak \(S^p\)-a.a. solution to the parabolic equation
\[ u^{\prime }(t)+A(t)u=f(t) \] in a reflexive Banach space, assuming some appropriate conditions of monotonicity, coercitivity of the operators \(A(t)\) and \(S^{p^{\prime }}\)-almost automorphy of the forced term \(f(t)\). This result extends a known result in the case of almost periodicity. An application is also given.

34G10 Linear differential equations in abstract spaces
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
35K90 Abstract parabolic equations
Full Text: DOI
[1] Bochner, S., Continuous mappinngs of almost automorphic and almost periodic functions, Proc. natl acad. sci. USA, 52, 907-910, (1964) · Zbl 0134.30102
[2] Bochner, S., Uniform convergence of monotone sequences of functions, Proc. natl acad. sci. USA, 47, 582-585, (1961) · Zbl 0103.05304
[3] Bochner, S., A new approach in almost-periodicity, Proc. natl acad. sci. USA, 48, 2039-2043, (1962) · Zbl 0112.31401
[4] Bochner, S.; von Neumann, J., On compact solutions of operational-differential equations, I, Ann. math., 36, 255-290, (1935) · JFM 61.0442.01
[5] Casarino, V., Characterization of almost automorphic groups and semigroups, Rend. accad. naz. sci. XL mem. mat. appl., 5, 24, 219-235, (2000)
[6] Gal, C.S.; Gal, S.G.; N’Guérékata, G.M., Almost automorphic functions in Fréchet spaces and applications to differential equations, Forum math., 71, 201-230, (2005) · Zbl 1085.43004
[7] Goldstein, J.A.; N’Guérékata, G.M., Almost automorphic solutions of semilinear evolution equations, Proc. amer. math. sci., 133, 2401-2408, (2005) · Zbl 1073.34073
[8] Johnson, R.A., A linear almost periodic equation with an almost automorphic solution, Proc. amer. math. soc., 82, 2, 199-205, (1981) · Zbl 0474.34039
[9] B.M. Levitan, V.V. Zhikov, Almost Periodic Functions and Differential Equations, (L.W. Longdon, Transl., from Russian) Cambridge, New York 1982 · Zbl 0499.43005
[10] Lions, J.-L., Quelques Méthodes de Résolution des problèmes aux limites non linéaires, (1969), Dunod Paris · Zbl 0189.40603
[11] Liu, J.; N’Guérékata, G.M.; Van Minh, N., A massera type theorem for almost automorphic solutions of differential equations, J. math. anal. appl., 299, 587-599, (2004) · Zbl 1081.34054
[12] N’Guérékata, G.M., Sur LES solutions presqu’automorphes d’équations différentielles abstraites, Ann. sci. math. Québec, 5, 69-79, (1981) · Zbl 0494.34045
[13] N’Guérékata, G.M., Almost automorphic and almost periodic functions in abstract spaces, (2001), Kluwer Academic/Plenum Publishers New York · Zbl 1001.43001
[14] N’Guérékata, G.M., Topics in almost automorphy, (2005), Springer-Verlag New York · Zbl 1073.43004
[15] N’Guérékata, G.M., Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations, Semigroup forum, 69, 1, 80-86, (2004) · Zbl 1077.47058
[16] N’Guérékata, G.M., Comments on almost automorphic and almost periodic functions in Banach spaces, Far east J. math. sci. (FJMS), 17, 3, 337-344, (2005) · Zbl 1096.34036
[17] Van Minh, N.; Naito, T.; N’Guérékata, G.M., A spectral countability condition for almost automorphy of solutions of differential equations, Proc. amer. math. soc., 134, 11, 3257-3266, (2006) · Zbl 1120.34044
[18] Pankov, A., Bounded and almost periodic solutions of nonlinear operator differential equations, (1990), Kluwer Dordrecht · Zbl 0712.34001
[19] Showalter, R.E., Monotone operators in Banach spaces and nonlinear partial differential equations, Amer. math. soc., providence, R. I., (1997) · Zbl 0870.35004
[20] Veech, W.A., Almost automorphic functions on groups, Amer. J. math., 87, 719-751, (1965) · Zbl 0137.05803
[21] Zaidman, S., Almost automorphic solutions of some abstract evolution equations, Instituto lombardo di sci. e lett., 110, 578-588, (1976) · Zbl 0374.34042
[22] Zaidman, S., Existence of asymptotically almost periodic and almost automorphic solutions for some classes of abstract differential equations, Ann. sci. math. quebec, 13, 79-88, (1989) · Zbl 0711.34055
[23] Zaidman, S., Topics in abstract differential equations, Nonlinear anal. TMA, 223, 849-870, (1994) · Zbl 0818.34035
[24] Zaidman, S., Topics in abstract differential equations, () · Zbl 0818.34035
[25] Zaki, M., Almost automorphic solutions of certain abstract differential equations, Ann. mat. pura appl., series 4, 101, 91-114, (1974) · Zbl 0304.42028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.