zbMATH — the first resource for mathematics

Formal structure of direct image of holonomic \({\mathcal{D}}\)-modules of exponential type. (English) Zbl 1140.32021
If \(\mathcal M\) is a regular holonomic \(\mathcal D_X\)-module on a complex manifold \(X\), we denote by \({\mathcal O}_X[\ast Z]\) the sheaf of meromorphic functions with poles at most along the reduced divisor \(Z\), and let \(g\in H^0({\mathcal O}_X[\ast Z])\) be such a function. Then \({\mathcal M}e^g\) denotes the holonomic \({\mathcal D}_X\)-module obtained by equipping \({\mathcal M}[\ast Z]={\mathcal M}\otimes_{{\mathcal O}_X}{\mathcal O}_X[\ast Z]\) with the connection \(\nabla_g=\nabla +dg\), where \(\nabla\) is the connection on \({\mathcal M}[\ast Z]\) coming from its left \({\mathcal D}_X\)-module structure. Such a holonomic \({\mathcal D}_X\)-module is said to be of exponential type. It is irregular along \(Z\). If \(f\colon X \to C\) is a proper map to a curve then the cohomology sheaves of the direct image of \({\mathcal M}e^g\) under \(f\) are holonomic \({\mathcal D}_C\)-modules but may have irregular singularities.
The purpose of this paper to compute formal invariants of these cohomology modules at their singularities. The problem is thus local on the base, so it is enough to consider \(X=D\times{\mathbb P}^1\) (\(D\) a disc centred at \(0\in{\mathbb C}\)) and \(f=p_1\colon X\to D\), \(g=p_2\colon X\to {\mathbb P}^1\). Then look at \({\mathcal N}_0={\mathcal H}^0 p_{1+}({\mathcal M}e^{p_2})\). Theorem 1 of the paper computes the Newton polygon (and hence the slopes and irregularity number) of \({\mathcal N}_0\) in terms of multiplicities of local irreducible components \(S_\ell\) of the singular support of \({\mathcal N}_0\), and gives a decomposition of the formal irregular part of \({\mathcal N}_0\) after a base change, in terms of Puiseux parametrisations of \(S_\ell\). The characteristic polynomial of the monodromy is computed (Theorem 2) under a genericity assumption. Theorems 3 and 4 reduce other cases to this one at least formally. In particular every formal \({\mathbb C}\big[[t]\big]\langle\partial_t\rangle\)-module is isomorphic after a base change to a germ of a formalised direct image of an analytic \({\mathcal D}\)-module of exponential type.
The main tools are the properties of specialisation and higher direct images established by Y. Laurent and B. Malgrange [Ann. Inst. Fourier 45, No. 5, 1353–1405 (1995; Zbl 0837.35006)], together with local analytic computations in suitable partial resolutions of the singularities.

32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
32C38 Sheaves of differential operators and their modules, \(D\)-modules
34M35 Singularities, monodromy and local behavior of solutions to ordinary differential equations in the complex domain, normal forms
32S45 Modifications; resolution of singularities (complex-analytic aspects)
Full Text: DOI
[1] Borel A. (1987). Algebraic D-Modules, Perspectives in Math 2. Academic, Boston · Zbl 0642.32001
[2] Briançon J. and Maisonobe Ph. (1984). Idéaux de germes d’opérateurs différentiels à une variable. Ens. Math. 30: 7–38 · Zbl 0542.14008
[3] Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Algebraic geometry, Tokyo/Kyoto, 1982, pp. 134–142. Lecture Notes in Math. 1016. springer, Berlin (1983)
[4] Kashiwara, M.: Index theorem for constructible sheaves. In: Differential systems and singularities, Luminy, 1983, pp. 193–209. Astérisque 130, Soc. Math. France, Paris (1985)
[5] Kashiwara M. and Schapira P. (1990). Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften 292. Springer-Verlag, Heidelberg · Zbl 0709.18001
[6] Laurent Y. and Malgrange B. (1995). Cycles proches, spécialisation et \({\mathcal{D}}\) -modules. Ann. Inst. Fourier t. 45(5): 1353–1405 · Zbl 0837.35006
[7] Maisonobe, Ph., Mebkhout, Z.: Le théorème de comparaison pour les cycles évanescents. In: Éléments de la théorie des systèmes différentiels géomériques, pp. 311–389. Séminaires et Congrès 8, Soc. Math. France, Paris (2004)
[8] Malgrange, B.: Polynôme de Bernstein-Sato et cohomologie évanescente. In Analysis and topology on singular spaces, II, III, Luminy, 1981, pp. 243–267. Astérisque 101, Soc. Math. France, Paris (1983)
[9] Malgrange B. (1991). Equations différentielles à coefficients polynomiaux. Progress in Math., 96. Birkhäuser, Boston · Zbl 0764.32001
[10] Malgrange, B.: De Rham complex and direct images of \({\mathcal{D}}\) -modules. In: Images directes et constructibilté, pp. 1–13. Travaux en cours 46. Hermann, Paris (1993) · Zbl 0853.32013
[11] Mebkhout, Z.: Le formalisme des six opérations de Grothendieck pour les \({\mathcal{D}}_X\) - modules cohérents. Travaux en Cours 35. Hermann, Paris (1988)
[12] Mebkhout, Z., Narváez-Macarro, L.: Le Théorème de constructibilité de Kashiwara. In: Image directe et constructibilité, pp. 47–98. Travaux en cours 46. Hermann, Paris (1993) · Zbl 0847.32012
[13] Roucairol, C.: L’irrégularité du complexe \(f_+({\mathcal{O}}_{{\mathbb{C}}^n}e^g)\) , Thesis n. 619. Angers University (2004)
[14] Roucairol C. (2006). Irregularity of an analogue of the Gauss–Manin systems. Bull. Soc. Math. France 134(2): 269–286 · Zbl 1122.32019
[15] Roucairol, C.: The irregularity of the direct image of some \({\mathcal{D}}\) -modules. Publ. RIMS 42 (4), Kyoto Univ. (2006) · Zbl 1132.32005
[16] Sabbah, C.: \({\mathcal{D}}_X\) -modules et cycles évanescents. In [11], pp. 201–239 (1988)
[17] Sabbah, C.: Algebraic theory of differential equations. In \({\mathcal{D}}\) -modules cohérents et holonomes, pp. 1–80. Les cours du CIMPA 45. Hermann, Paris (1993) · Zbl 0841.14014
[18] Sabbah, C.: Equations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2. Astérisque 263. Soc. Math. France (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.