zbMATH — the first resource for mathematics

A comparison of two predator-prey models with Holling’s type I functional response. (English) Zbl 1138.92033
Summary: We analyze a laissez-faire predator-prey model and a Leslie-type predator-prey model with type I functional responses. We study the stability of the equilibrium where the predator and prey coexist by both performing a linearized stability analysis and by constructing a Lyapunov function. For the Leslie-type model, we use a generalized Jacobian to determine how eigenvalues jump at the corner of the functional response. We show, numerically, that our two models can both possess two limit cycles that surround a stable equilibrium and that these cycles arise through global cyclic-fold bifurcations. The Leslie-type model may also exhibit super-critical and discontinuous Hopf bifurcations. We then present and analyze a new functional response, built around the arctangent, that smoothes the sharp corner in a type I functional response. For this new functional response, both models undergo Hopf, cyclic-fold, and Bautin bifurcations. We use our analyses to characterize predator-prey systems that may exhibit bistability.

92D40 Ecology
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI
[1] Abrams, P.A.; Ginzburg, L.R., The nature of predation: prey dependent ratio dependent or neither?, Trends ecol. evol., 15, 337, (2000)
[2] Beisner, B.E.; Haydon, D.T.; Cuddington, K., Alternative stable states in ecology, Front. ecol. environ., 1, 376, (2003)
[3] Blackman, F.F., Optima and limiting factors, Ann. bot., 19, 281, (1905)
[4] Caughley, G.; Lawton, J.H., Plant-herbivore systems, (), 132
[5] Cheng, K.S.; Hsu, S.B.; Lin, S.S., Some results on global stability of a predator – prey system, J. math. biol., 12, 115, (1981) · Zbl 0464.92021
[6] Clarke, F.H.; Ledyaev, Y.S.; Stern, R.J.; Wolenski, P.R., Nonsmooth analysis and control theory, (1998), Springer New York · Zbl 1047.49500
[7] Collings, J.B.; Wollkind, D.J., A global analysis of a temperature-dependent model system for a mite predator – prey interaction, SIAM J. appl. math., 50, 1348, (1990) · Zbl 0712.92020
[8] Collings, J.B., The effects of the functional response on the bifurcation behavior of a mite predator – prey interaction model, J. math. biol., 36, 149, (1997) · Zbl 0890.92021
[9] Dabes, J.N.; Finn, R.K.; Wilke, C.R., Equations of substrate-limited growth: the case for blackman kinetics, Biotechnol. bioeng., 15, 1159, (1973)
[10] Dai, G.; Tang, M., Coexistence region and global dynamics of a harvested predator – prey system, SIAM J. appl. math., 58, 193, (1998) · Zbl 0916.34034
[11] E. Doedel, AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Available from: <http://indy.cs.concordia.ca/auto/>.; E. Doedel, A.R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang, C. Zhang, AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, Technical report, Concordia University, 2006.
[12] Dubois, D.M.; Closset, P.L., Patchiness in primary and secondary production in the southern bight: a mathematical theory, (), 211
[13] Ermentrout, B., Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students, (2002), SIAM Philadelphia · Zbl 1003.68738
[14] Fussmann, G.F.; Ellner, S.P.; Shertzer, K.W.; Hairston, N.G., Crossing the Hopf bifurcation in a live predator – prey system, Science, 290, 1358, (2000)
[15] Ginzburg, L.R., Assuming reproduction to be a function of consumption raises doubts about some popular predator – prey models, J. anim. ecol., 67, 325, (1998)
[16] Gutierrez, A.P., Applied population ecology: A supply-demand approach, (1996), John Wiley & Sons New York
[17] Hanski, I.; Henttonen, H.; Korpimäki, E.; Oksanen, L.; Turchin, P., Small rodent dynamics and predation, Ecology, 82, 1505, (2001)
[18] Harrison, G.W., Global stability of predator – prey interactions, J. math. biol., 8, 159, (1979) · Zbl 0425.92009
[19] Harrison, G.W., Comparing predator – prey models to luckinbill’s experiment with didinium and paramecium, Ecology, 76, 357, (1995)
[20] Hensen, R.H.A.; van de Molengraft, M.J.G.; Steinbuch, M., Friction induced hunting limit cycles: a comparison between the lugre and switch friction model, Automatica, 39, 2131, (2003) · Zbl 1254.74085
[21] Hesaaraki, M.; Moghadas, S.M., Existence of limit cycles for predator – prey systems with a class of functional responses, Ecol. model., 142, 1, (2001)
[22] Holling, C.S.; Holling, C.S., Some characteristics of simple types of predation and parasitism, Can. entomol., Can. entomol., 91, 385, (1959)
[23] Hsu, S.B., On global stability of a predator – prey system, Math. biosci., 39, 1, (1978) · Zbl 0383.92014
[24] Hsu, S.B.; Huang, T.W., Global stability for a class of predator – prey systems, SIAM J. appl. math., 55, 763, (1995) · Zbl 0832.34035
[25] Jeschke, J.M.; Kopp, M.; Tollrian, R., Consumer-food system: why type I functional responses are exclusive to filter feeders, Biol. rev., 79, 337, (2004)
[26] Kuang, Y., Global stability of gause-type predator – prey systems, J. math. biol., 28, 463, (1990) · Zbl 0742.92022
[27] Kuznetsov, Y.A., Elements of applied bifurcation theory, (1995), Springer-Verlag New York · Zbl 0829.58029
[28] Leine, R.I., Bifurcations of equilibria in non-smooth continuous systems, Physica D, 223, 121, (2006) · Zbl 1111.34034
[29] Leine, R.I.; Nijmeijer, H., Dynamics and bifurcations of non-smooth mechanical systems, (2004), Springer-Verlag Heidelberg · Zbl 1068.70003
[30] Leine, R.I.; van Campen, D.H., Bifurcation phenomena in non-smooth dynamical systems, Eur. J. mech. A solids, 25, 595, (2006) · Zbl 1187.70041
[31] Leslie, P.H., Some further notes on the use of matrices in population mathematics, Biometrika, 35, 213, (1948) · Zbl 0034.23303
[32] Leslie, P.H.; Gower, J.C., The properties of a stochastic model for the predator – prey type of interaction between two species, Biometrika, 47, 219, (1960) · Zbl 0103.12502
[33] Li, X.Y.; Wang, W.D., Qualitative analysis of predator – prey system with Holling type I functional response, J. south China normal univ. (nat. sci. ed.), 29, 712, (2004)
[34] Liu, B.; Zhang, Y.; Chen, L., Dynamic complexities of a Holling I predator – prey model concerning periodic biological and chemical control, Chaos solitons fractals, 22, 123, (2004) · Zbl 1058.92047
[35] Lohse, D.P., Relative strengths of competition for space and food in a sessile filter feeder, Biol. bull., 203, 173, (2002)
[36] Lucero, J.C., A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset, J. acoust. soc. am., 105, 423, (1999)
[37] McCauley, E.; Nisbet, R.M.; Murdoch, W.M.; de Roos, A.M.; Gurney, W.S.C., Large-amplitude cycles of daphnia and its algal prey in enriched environments, Nature, 402, 653, (1999)
[38] May, R.M.; Beddington, J.R.; Clark, C.W.; Holt, S.J.; Laws, R.M., Management of multispecies fisheries, Science, 205, 267, (1979)
[39] May, R.M., Models for two interacting populations, (), 49
[40] Mohr, S.; Adrian, R., Functional responses of the rotifers brachionus calyciflorus and brachionus rubens feeding on armored and unarmored ciliates, Limnol. oceanogr., 45, 1175, (2000)
[41] Murdoch, W.W.; Briggs, C.J.; Nisbet, R.M., Consumer-resource dynamics, (2003), Princeton University Press Princeton, New Jersey
[42] Petraitis, P.S.; Dudgeon, S.R., Detection of alternative stable states in marine communities, J. exp. mar. biol. ecol., 300, 343, (2004)
[43] Ren, Y.; Han, L., The predator prey model with two limit cycles, Acta math. appl. sinica (English ser.), 5, 30, (1989) · Zbl 0693.34034
[44] Rothhaupt, K.O., Changes of the functional responses of the rotifers brachionus rubens and brachionus calyciflorus with particle sizes, Limnol. oceanogr., 35, 24, (1990)
[45] Scheffer, M., Ecology of shallow lakes, (1998), Chapman and Hall London
[46] Solomon, M.E., The natural control of animal populations, J. anim. ecol., 18, 1, (1949)
[47] Strogatz, S.H., Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, (2001), Westview Press Cambridge, MA
[48] Tanner, J.T., The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56, 855, (1975)
[49] Turchin, P., Complex population dynamics: A theoretical/empirical synthesis, (2003), Princeton University Press Princeton, New Jersey · Zbl 1062.92077
[50] Turchin, P.; Hanski, I., An empirically based model for latitudinal gradient in vole population dynamics, Am. nat., 149, 842, (1997)
[51] Yodzis, P., Predator – prey theory and management of multispecies fisheries, Ecol. appl., 4, 51, (1994)
[52] Zhang, Y.; Xu, Z.; Liu, B., Dynamic analysis of a Holling I predator – prey system with mutual interference concerning pest control, J. biol. syst., 13, 45, (2005) · Zbl 1073.92061
[53] Zhu, H.P.; Campbell, S.A.; Wolkowicz, G.S.K., Bifurcation analysis of a predator – prey system with nonmonotonic functional response, SIAM J. appl. math., 63, 636, (2002) · Zbl 1036.34049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.