×

zbMATH — the first resource for mathematics

Second-mover advantage and price leadership in Bertrand duopoly. (English) Zbl 1138.91304
Summary: We consider the issue of first- versus second-mover advantage in differentiated-product Bertrand duopoly with general demand and asymmetric linear costs. We generalize existing results for all possible combinations where prices are either strategic substitutes and/or complements, dispensing with common extraneous and restrictive assumptions. We show that a firm with a sufficiently large cost lead over its rival has a first-mover advantage. For the linear version of the model, we invoke a natural endogenous timing scheme coupled with equilibrium selection according to risk dominance. The analysis yields, as the unique equilibrium outcome, sequential play with the low-cost firm as leader.

MSC:
91A10 Noncooperative games
91B24 Microeconomic theory (price theory and economic markets)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amir, R.; Grilo, I., Stackelberg versus Cournot equilibrium, Games econ. behav., 26, 1-21, (1999) · Zbl 0915.90041
[2] Amir, R., Endogenous timing in two-player games: A counterexample, Games econ. behav., 9, 234-237, (1995) · Zbl 0831.90127
[3] Amir, R.; Grilo, I.; Jin, J., Demand-induced endogenous price leadership, Int. game theory rev., 1, 219-240, (1999) · Zbl 1045.91505
[4] Anderson, S.; Engers, M., Stackelberg vs. Cournot oligopoly equilibrium, Int. J. ind. organ., 10, 127-135, (1992)
[5] d’Aspremont, C.; Gerard-Varet, L.-A., Stackelberg solvable games and preplay communication, J. econ. theory, 23, 201-217, (1980) · Zbl 0448.90075
[6] Boyer, M.; Moreaux, M., Being a leader or a follower: reflections on the distribution of roles in duopoly, Int. J. ind. organ., 5, 175-192, (1987)
[7] Cabrales, A.; Garcia-Fontes, W.; Motta, M., Risk dominance selects the leader: an experimental analysis, Int. J. ind. organ., 18, 137-162, (2000)
[8] Caplin, A.; Nalebuff, B., Aggregation and imperfect competition: on the existence of equilibrium, Econometrica, 59, 25-69, (1991) · Zbl 0738.90012
[9] Cooper, T., Most-favored pricing policy and tacit collusion, RAND J. econ., 17, 377-388, (1986)
[10] Cooper, R.; DeJong, D.; Forsythe, R.; Ross, T., Selection criteria in coordination games: some experimental results, Amer. econ. rev., 80, 218-233, (1990)
[11] van Damme, E.; Hurkens, S., Commitment-robust equilibria and endogenous timing, Games econ. behav., 15, 290-311, (1996) · Zbl 0858.90140
[12] van Damme, E.; Hurkens, S., Endogenous price leadership, Games econ. behav., 47, 404-420, (2004) · Zbl 1077.91013
[13] van Damme, E.; Hurkens, S., Endogenous Stackelberg leadership, Games econ. behav., 28, 105-129, (1999) · Zbl 0938.91011
[14] Daughety, A., Beneficial concentration, Amer. econ. rev., 80, 1231-1237, (1990)
[15] Daughety, A.; Reinganum, J., Asymmetric information acquisition and behavior in role choice models: an endogenously generated signaling game, Int. econ. rev., 35, 795-819, (1994) · Zbl 0815.90035
[16] Deneckere, R.; Kovenock, D., Price leadership, Rev. econ. stud., 59, 143-162, (1992) · Zbl 0751.90017
[17] Dowrick, S., Von Stackelberg and Cournot duopoly: choosing roles, RAND J. econ., 17, 251-260, (1986)
[18] Ellison, G., Learning, local interaction and coordination, Econometrica, 61, 1047-1071, (1993) · Zbl 0802.90143
[19] Friedman, J., Oligopoly and the theory of games, (1977), Cambridge Univ. Press New York · Zbl 0385.90001
[20] Fudenberg, D.; Tirole, J., Game theory, (1991), MIT Press Cambridge · Zbl 1339.91001
[21] Gabszewicz, J.; Thisse, J., Price competition, quality and income disparities, J. econ. theory, 20, 340-359, (1979) · Zbl 0421.90012
[22] Gal-Or, E., First mover and second mover advantages, Int. econ. rev., 26, 649-653, (1985) · Zbl 0573.90106
[23] Hamilton, J.; Slutsky, S., Endogenous timing in duopoly games: Stackelberg or Cournot equilibria, Games econ. behav., 2, 29-46, (1990) · Zbl 0753.90074
[24] Harsanyi, J.; Selten, R., A general theory of equilibrium selection in games, (1988), MIT Press Cambridge, MA · Zbl 0693.90098
[25] Kandori, M.; Mailath, G.; Rob, R., Learning, mutation, and long-run equilibria in games, Econometrica, 61, 29-56, (1993) · Zbl 0776.90095
[26] Leininger, W., More efficient rent-seeking—a munchhausen solution, Public choice, 75, 43-62, (1993)
[27] Mailath, G., Endogenous sequencing of firm decisions, J. econ. theory, 59, 169-182, (1993) · Zbl 0793.90016
[28] Markham, J., The nature and significance of price leadership, Amer. econ. rev., 41, 891-905, (1951)
[29] Milgrom, P.; Roberts, J., Rationalizability, learning, and equilibrium in games with strategic complementarities, Econometrica, 58, 1255-1278, (1990) · Zbl 0728.90098
[30] Pastine, I.; Pastine, T., Cost of delay and endogenous price leadership, Int. J. ind. organ., 22, 135-145, (2004)
[31] Robson, A., Duopoly with endogenous strategic timing: Stackelberg regained, Int. econ. rev., 31, 263-274, (1990) · Zbl 0714.90010
[32] Rosenthal, R., A note on robustness of equilibria with respect to commitment opportunities, Games econ. behav., 3, 237-243, (1991) · Zbl 0825.90806
[33] Salop, S., Practices that (credibly) facilitate oligopoly coordination, ()
[34] von Stackelberg, H., Marktform und gleichgewicht, (1934), Springer Vienna · Zbl 1405.91003
[35] von Stengel, B., 2003. Follower payoffs in symmetric duopoly games. Research report LSE-CDAM 2003-14, LSE · Zbl 1230.91116
[36] Stigler, G., The kinked oligopoly demand curve and rigid prices, J. polit. economy, 55, 432-449, (1947)
[37] Tarski, A., A lattice-theoretical fixed-point theorem and its applications, Pacific J. math., 5, 285-309, (1955) · Zbl 0064.26004
[38] Topkis, D., Minimizing a submodular function on a lattice, Operations res., 26, 305-321, (1978) · Zbl 0379.90089
[39] Van Huyck, J.; Battalio, R.; Beil, R., Tacit coordination games, strategic uncertainty, and coordination failure, Amer. econ. rev., 80, 234-248, (1990)
[40] Vives, X., Nash equilibrium with strategic complementarities, J. math. econ., 19, 305-321, (1990) · Zbl 0708.90094
[41] Vives, X., Oligopoly pricing: old ideas and new tools, (1999), MIT Press Cambridge, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.