×

Conformal covariance and positivity of energy in charged sectors. (English) Zbl 1138.81509

Summary: It has been recently noted that diffeomorphism covariance of a Chiral Conformal QFT in the vacuum sector automatically ensures Möbius covariance in all charged sectors. In this article it is shown that diffeomorphism covariance and positivity of the energy in the vacuum sector even ensure the positivity of energy in the charged sectors.
The main observation of this paper is that the positivity of energy-at least in case of a Chiral Conformal QFT-is a local concept: it is related to the fact that the energy density, when smeared with some local nonnegative test functions, remains bounded from below (with the bound depending on the test function).
The presented proof relies in an essential way on recently developed methods concerning the smearing of the stress-energy tensor with nonsmooth functions.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T05 Axiomatic quantum field theory; operator algebras
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bertozzini, P., Conti, R., Longo, R.: Covariant sectors with infinite dimension and positivity of energy. Commun. Math. Phys. 141, 471–492 (1998) · Zbl 0908.46038
[2] Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982) · Zbl 0498.46061
[3] Buchholz, D., Schulz-Mirbach, H.: Haag duality in conformal quantum field theory. Rev. Math. Phys. 2, 105–125 (1990) · Zbl 0748.46040
[4] Carpi, S.: The Virasoro algebra and sectors with infinite statistical dimension. Ann. Henri Poincaré 4, 601–611 (2003) · Zbl 1040.81054
[5] Carpi, S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244, 261–284 (2004) · Zbl 1071.81079
[6] Carpi, S., Weiner, M.: On the uniqueness of diffeomorphism symmetry in conformal field theory. Commun. Math. Phys. 258, 203–221 (2005) · Zbl 1079.81060
[7] D’Antoni, C., Fredenhagen, K., Köster, S.: Implementation of Conformal Covariance by Diffeomorphism Symmetry. Lett. Math. Phys. 67, 239–247 (2004) · Zbl 1053.81080
[8] Dixmier, J.: C*-algebras. North-Holland Mathematical Library; Amsterdam: North Holland, v. 15, 1982
[9] Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)
[10] Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. II. Commun. Math. Phys. 35, 49–85 (1974)
[11] Fewster, C.J., Hollands, S.: Quantum Energy Inequalities in two-dimensional conformal field theory. Rev. Math. Phys. 17, 577 (2005) · Zbl 1083.81581
[12] Fredenhagen, K.: Superselection sectors with infinite statistical dimension. In: Subfactors. H. Araki, et al., eds., Singapore: World Scientific, 1995, pp. 242–258 · Zbl 0929.46061
[13] Fredenhagen, K., Jörß, M.: Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176, 541–554 (1996) · Zbl 0853.46077
[14] Fröhlich, J., Gabbiani, F.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993) · Zbl 0801.46084
[15] Goodman, R., Wallach, N.R.: Projective unitary positive-energy representations of Diff+ (S 1). J. Funct. Anal. 63, 299–321 (1985) · Zbl 0636.22013
[16] Guido, D., Longo, R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148, 521–551 (1992) · Zbl 0771.46039
[17] Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181, 11–35 (1996) · Zbl 0858.46053
[18] Guido, D., Longo, R., Wiesbrock, H.-W.: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192, 217–244 (1998) · Zbl 0993.46035
[19] Haag, R.: Local Quantum Physics. 2 nd ed., Berlin-Heidelberg-New York: Springer-Verlag, 1996 · Zbl 0857.46057
[20] Jörß, M.: Lokale Netze auf dem eindimensionalen Lichtkegel. Diploma thesis (1991), FU Berlin
[21] Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras. Volume I,II, London-New york-San Diego: Academic Press. Inc., 1986 · Zbl 0601.46054
[22] Katznelson, Y.: An introduction to harmonic analysis. New York: Dover Publications, 1976 · Zbl 0352.43001
[23] Kawahigashi, Y., Longo, R.: Classification of local conformal nets. Case c<1. Ann. of Math. 160, 493–522 (2004) · Zbl 1083.46038
[24] Kawahigashi, Y., Longo, R., Müger, M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001) · Zbl 1016.81031
[25] Köster, S.: Absence of stress energy tensor in CFT2 models. http://arxiv.org/list/math-ph/0303053 , 2003
[26] Köster, S.: Conformal transformation as observables. Lett. Math. Phys. 61, 187–198 (2002) · Zbl 1016.81027
[27] Loke, T.: Operator algebras and conformal field theory of the discrete series representation of Diff+ (S 1). PhD Thesis, University of Cambridge, 1994
[28] Longo, R., Xu, F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251, 321–364 (2004) · Zbl 1158.81345
[29] Milnor, J.: Remarks on infinite-dimensional Lie groups. In: B.S. De Witt, R. Stora, eds.: Relativity, groups and topology II. Les Houches, Session XL, 1983, Amsterdam-New York: Elsevier, 1984, pp. 1007–1057
[30] Rehren, K.-H.: A new look at the Virasoro algebra. Lett. Math. Phys. 30, 125–130 (1994) · Zbl 0789.17018
[31] Schroer, B., Wiesbrock, H.-W.: Modular Theory and Geometry. Rev. Math. Phys. 12, 139–158 (2000) · Zbl 0969.81035
[32] Xu, F.: Jones-Wassermann subfactors for disconnected intervals. Commun. Contemp. Math. 2, 307–347 (2000) · Zbl 0966.46043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.