×

zbMATH — the first resource for mathematics

Buckling in space and time. (English) Zbl 1138.74332
Summary: A personal overview of the buckling process is given, based on more than 30 years research experience. A fundamental distinction is drawn between structures that tend to distribute their pattern of buckling over the entire available length, and those that favour limiting it to a localized portion. Difficulties are compounded by the fact that localized solutions typically are shadowed by distributed counterparts. The difference is found to depend primarily on the stability of the system at the point of buckling. When an unstable localized form shows a tendency to restabilize, a pattern known as cellular buckling can develop, taking place sequentially in both space and time. The paper focuses particularly on the buckling of the axially-compressed cylindrical shell, and shows how the circumferential periodicity coupled with axial localization has special but hidden characteristics. In particular, the circumferential wavenumber is picked at an early stage of buckling and remains locked, while localization in the axial sense permits extensive change to the post-buckling shape.

MSC:
74G60 Bifurcation and buckling
37N15 Dynamical systems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Thompson, J. M. T. and Hunt, G. W., A General Theory of Elastic Stability, Wiley, London, 1973.
[2] Yoshimura, Y., ’On the mechanics of buckling of a circular cylindrical under axial compression’, Technical Report 5, University of Tokyo. Reports of the Institute of Science and Technology of the University of Tokyo (English translation: Technical Memorandum No 1390 of the National Advisory Committee for Aeronautics, Washington, DC), 1955. · Zbl 0066.44102
[3] Hunt, G. W., Peletier, M. A., Champneys, A. R., Woods, P. D., Wadee, M. A., Budd, C. J., and Lord, G. J., ’Cellular buckling in long structures’, Nonlinear Dynamics 21(1), 2000, 3–29. · Zbl 0974.74024
[4] Peletier, L. A. and Troy, W. C., Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, 2001. · Zbl 1076.34515
[5] Chilver, A. H., ’Design philosophy in structural stability’, in Buckling of Structures, IUTAM Symposium, Cambridge, MA, 1974, B. Budiansky (ed.), Springer-Verlag, Berlin, 1976, pp. 331–345.
[6] Yamada, S. and Croll, J. G. A., ’Contributions to understanding the behavior of axially compressed cylinders’, ASME Journal of Applied Mechanics 66, 1999, 299–309. · doi:10.1115/1.2791049
[7] Calladine, C. R., ’A shell-buckling paradox resolved’, in Advances in the Mechanics of Plates and Shells, D. Durban, G. Givoli, and J. G. Simmonds (eds.), Kluwer Academic Publishers, Dordrecht, 2000, pp. 119–134.
[8] Wadee, M. K., ’The elastic strut on elastic foundation: A model localized buckling problem’, in Localization and Solitary Waves in Solid Mechanics, A. R. Champneys, G. W. Hunt, and J. M. T. Thompson (eds.), World Scientific Publishing, Singapore, 1999, pp. 31–53. · Zbl 1166.74358
[9] Hunt, G. W., Bolt, H. M., and Thompson, J. M. T., ’Structural localization phenomena and the dynamical phase-space analogy’, Proceedings of the Royal Society of London, Series A 425, 1989, 245–267. · Zbl 0697.73043 · doi:10.1098/rspa.1989.0105
[10] Peletier, M. A., ’Generalized monotonicity from global minimization in fourth-order ordinary differential equations’, Nonlinearity 14(5), 2001, 1221–1238. · Zbl 1001.37053 · doi:10.1088/0951-7715/14/5/315
[11] Everall, P. R. and Hunt, G. W., ’Mode jumping in the buckling of struts and plates: A comparative study’, International Journal of Non-Linear Mechanics 35, 2000, 1067–1079. · Zbl 1006.74037 · doi:10.1016/S0020-7462(99)00080-3
[12] Thompson, J. M. T. and Stewart, H. B., Nonlinear Dynamics and Chaos, 2nd edn., Wiley, New York, 2001. · Zbl 1174.37300
[13] Hunt, G. W. and Everall, P. R., ’Arnold tongues and mode jumping in the supercritical post-buckling of an archetypal elastic structure’, Proceedings of the Royal Society of London, Series A 455, 1999, 125–140. · Zbl 0927.74026 · doi:10.1098/rspa.1999.0305
[14] Hunt, G. W. and Wadee, M. K., ’Comparative Lagrangian formulations for localized buckling’, Proceedings of the Royal Society of London, Series A 434, 1991, 485–502. · Zbl 0753.73037 · doi:10.1098/rspa.1991.0109
[15] Buffoni, B., Champneys, A. R., and Toland, J. F., ’Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system’, Journal of Dynamics of Differential Equations 8, 1996, 221–281. · Zbl 0854.34047 · doi:10.1007/BF02218892
[16] Budd, C. J., Hunt, G. W., and, Kuske, R., ’Asymptotics of cellular buckling close to the Maxwell load’, Proceedings of the Royal Society of London, Series A 457, 2001, 2935–2964. · Zbl 1011.74023 · doi:10.1098/rspa.2001.0843
[17] Koiter, W. T., ’On the Stability of Elastic Equilibrium’, Ph.D. Thesis, Technische Hogeschool, Delft, Technological University of Delft, Holland (English translation issued as NASA, Technical Transactions F 10, 1945, 833, 1967).
[18] Yamaki, N., Elastic Stability of Circular Cylindrical Shells, Vol. 27: Applied Mathematics and Mechanics, Elsevier, Amsterdam, 1984. · Zbl 0544.73062
[19] Hoff, N., Madsen, W. A., and Mayers, J., ’Post-buckling equilibrium of axially compressed circular cylindrical shells’, AIAA Journal 4(1), 1966, 126–133. · doi:10.2514/3.3395
[20] Hunt, G. W. and Lucena Neto, E., ’Maxwell critical loads for axially loaded cylindrical shells’, ASME Journal of Applied Mechanics 60(3), 1993, 702–706. · doi:10.1115/1.2900861
[21] Lord, G. J., Champneys, A. R., and Hunt, G. W., ’Computation of homoclinic orbits in partial differential equations: An application to cylindrical shell buckling’, SIAM Journal on Scientific Computing 21(2), 1999, 591–619. · Zbl 0954.74021 · doi:10.1137/S1064827597321647
[22] Donnell, L. H., ’A new theory for buckling of thin cylinders under axial compression and bending’, ASME Aeronautical Engineering AER-56-12, 1934, 795–806.
[23] Hunt, G. W., Lord, G. J., and Peletier, M. A., ’Cylindrical shell buckling: A characterization of localization and periodicity’, Discrete and Continuous Dynamical Systems, Series B 3(4), 2003, 505–518. · Zbl 1046.74017 · doi:10.3934/dcdsb.2003.3.505
[24] Hunt, G. W., ’Hidden (a)symmetries of elastic and plastic bifurcation’, Applied Mechanics Reviews 39(8), 1986, 1165–1186. · doi:10.1115/1.3149518
[25] Eßlinger, M. and Geier, B., ’Gerechnete Nachbeullasten als untere Grenze der experimentallen axialen Beullasten von Kreiszylindern’, Der Stahlbau 41(12), 1972, 353–359.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.