×

zbMATH — the first resource for mathematics

Sample path properties of the local time of multifractional Brownian motion. (English) Zbl 1138.60032
The paper is devoted to various properties of the multifractal Brownian motion (mBm) \(B^H=(B^{H(t)}(t)\), \(t>0)\), which is the Gaussian process with the Hurst exponent depending on time. The representation of the mBm was introduced by J. Lévy-Vehel and R. F. Peltier [“Multifractional Brownian motion: Definitions and preliminary results”, Technical Report PR-2645, INRIA (1995)] by \[ \begin{split} B^{H(t)} (t)=\frac{1}{\Gamma(H(t)+1/2)} \Big( \int_{-\infty}^0 [(t-u)^{H(t)-1/2}-(-u)^{H(t)-1/2}]W(du) \\ +\int_0^t (t-u)^{H(t)-1/2}W(du)\Big), \quad t\geq 0, \end{split} \] where \(H\) is some Hölder continuous function and \(W\) is the standard Brownian motion on \((-\infty,\infty)\). Independently, mBm was defined by A. Benassi, S. Jaffard and D. Roux [Rev. Mat. Iberoam. 13, No. 1, 19–90 (1997; Zbl 0880.60053)] by \[ \hat{B}\,^{H(t)}(t)=\int_{\mathbb{R}}\frac{e^{it\xi}-1}{|\xi|^{H(t)+1/2}} d\hat{W}(d\xi). \] First, the authors establish the local and uniform moduli of continuity for the local time of the mBm. In contrast to the classical result, in the case of mBm the moduli of continuity depends on the point at which the regularity is studied [see also M. Csörgö, Z.-Y. Lin and Q.-M. Shao, Stochastic Processes Appl. 58, No. 1, 1–21 (1995; Zbl 0834.60088) and N. Kono, Proc. Japan Acad., Ser. A 53, 84–87 (1977; Zbl 0437.60057)]. Secondly, the authors establish the law of iterated logarithm in the Chung’s form.
Further, the authors establish the asymptotic self-similarity for the local times of the mBm. Then this results is used to prove some local limit theorems for mBm.

MSC:
60G17 Sample path properties
60G15 Gaussian processes
60J55 Local time and additive functionals
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Adler, R.J. (1990)., An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. IMS Lecture Notes-Monograph Series 12 . Hayward, CA: IMS. · Zbl 0747.60039
[2] Ayache, A. (2001). Du mouvement Brownien fractionnaire au mouvement Brownien multifractionnaire., Techniques et Sciences Informatiques 20 1133–1152.
[3] Benassi, A., Jaffard, S. and Roux, D. (1997). Elliptic Gaussian random processes., Rev. Mat. Iberoamericana 13 19-90. · Zbl 0880.60053
[4] Berman, S.M. (1969). Local times and sample function properties of stationary Gaussian processes., Trans. Amer. Math. Soc. 137 277–299. JSTOR: · Zbl 0184.40801
[5] Berman, S.M. (1973). Local nondeterminism and local times of Gaussian processes., Indiana Univ. Math. J. 23 69–94. · Zbl 0264.60024
[6] Boufoussi, B., Dozzi, M. and Guerbaz, R. (2006). On the local time of multifractional Brownian motion., Stochastics 78 33–49. · Zbl 1124.60061
[7] Cohen, S. (1999). From self-similarity to local self-similarity: the estimation problem. In M. Dekking, J. Lévy-Véhel, E. Lutton and C. Tricot (eds), Fractals: Theory and Applications in Engineering , pp. 3–16. London: Springer. · Zbl 0965.60073
[8] Csörgö, M., Lin, Z. and Shao, Q.M. (1995). On moduli of continuity for local times of Gaussian processes., Stoch. Proc. Appl. 58 1–21. · Zbl 0834.60088
[9] Davies, L. (1976). Local Hölder conditions for the local times of certain stationary Gaussian processes., Ann. Probab. 14 277–298. · Zbl 0331.60028
[10] Dozzi, M. (2003). Occupation density and sample path properties of \(N\)-parameter processes., Topics in Spatial Stochastic Processes . Lecture Notes in Math. 1802 127–166. Berlin: Springer. · Zbl 1042.60031
[11] Ehm, W. (1981). Sample function properties of multi-parameter stable processes., Z. Wahrsch. Verw. Gebiete 56 195–228. · Zbl 0471.60046
[12] Geman, D. and Horowitz, J. (1980). Occupation densities., Ann. Probab. 8 1–67. · Zbl 0499.60081
[13] Gihman, I.I. and Skorohod, A.V. (1974)., The Theory of Stohastic Processes . I . New York: Springer. · Zbl 0291.60019
[14] Kasahara, Y. and Kosugi, N. (1997). A limit theorem for occupation times of fractional Brownian motion., Stoch. Proc. Appl. 67 161–175. · Zbl 0890.60036
[15] Kesten, H. and Spitzer, F. (1979). A limit theorem related to a new class of self similar processes., Z. Wahrsch. Verw. Gebiete 50 5–25. · Zbl 0396.60037
[16] Kôno, N. (1977). Hölder conditions for the local times of certain Gaussian processes with stationary increments., Proc. Japan Acad. Ser. A Math. Sci. 53 84–87. · Zbl 0437.60057
[17] Lévy-Véhel, J. and Peltier, R.F. (1995). Multifractional Brownian motion: Definition and preliminary results. Technical Report RR-2645, INRIA.
[18] Lim, S.C. (2001). Fractional Brownian motion and multifractional Brownian motion of Riemann–Liouville type., J. Phys. A 34 1301–1310. · Zbl 0965.82009
[19] Li, W.V. and Shao, Q.-M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In C.R. Rao and D. Shanbhag (eds), Stochastic Processes : Theory and Methods. Handbook of Statistics 19 , pp. 533–597. Amsterdam: North-Holland. · Zbl 0987.60053
[20] Monrad, D. and Rootzén, H. (1995). Small values of Gaussian processes and functional laws of the iterated logarithm., Probab. Theory Related Fields 101 173–192. · Zbl 0821.60043
[21] Xiao, Y. (2005). Strong local nondeterminism of Gaussian random fields and its applications. In T.-L. Lai, Q.-M. Shao and L. Qian (eds), Probability and Statistics with Applications .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.