×

zbMATH — the first resource for mathematics

Transport properties of quasi-free fermions. (English) Zbl 1137.82331
Summary: Using the scattering approach to the construction of nonequilibrium steady states proposed by D. Ruelle [J. Stat. Phys. 98, No. 1-2, 57–75 (2000; Zbl 0988.82032)], we study the transport properties of systems of independent electrons. We show that Landauer-Büttiker and Green-Kubo formulas hold under very general conditions.

MSC:
82C70 Transport processes in time-dependent statistical mechanics
46N50 Applications of functional analysis in quantum physics
47N50 Applications of operator theory in the physical sciences
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevB.24.1151
[2] DOI: 10.1002/cpa.3051 · Zbl 1038.81073
[3] Araki H., Proc. Steklov Inst. Math. 228 pp 191– (2000)
[4] Aschbacher W., Lecture Notes in Mathematics 1882, in: Open Quantum Systems III (2006) · Zbl 1126.82032
[5] DOI: 10.1023/A:1024619726273 · Zbl 1032.82020
[6] DOI: 10.1103/PhysRevLett.57.1761
[7] DOI: 10.1147/rd.321.0063
[8] DOI: 10.1103/PhysRevB.31.6207
[9] Bratteli O., Operator Algebras and Quantum Statistical Mechanics 2, 2. ed. (1996)
[10] DOI: 10.1063/1.1862324 · Zbl 1067.82055
[11] DOI: 10.1017/CBO9780511805776
[12] DOI: 10.1103/PhysRevB.23.6851
[13] Imry Y., Introduction to Mesoscopic Physics (1997)
[14] DOI: 10.1103/RevModPhys.71.S306
[15] DOI: 10.1002/hlca.19440270110
[16] DOI: 10.1007/s002220000076 · Zbl 0962.60056
[17] DOI: 10.1215/S0012-7094-06-13316-1 · Zbl 1107.47027
[18] DOI: 10.1007/s002200200602 · Zbl 0990.82017
[19] DOI: 10.1023/A:1019818909696 · Zbl 1025.82011
[20] Jakšić V., Lecture Notes in Physics 695, in: Large Coulomb Systems. Lecture Notes on Mathematical Aspects of QED (2006)
[21] DOI: 10.1007/s00220-006-0004-6 · Zbl 1104.82039
[22] DOI: 10.1007/s10955-006-9075-1 · Zbl 1101.82029
[23] DOI: 10.1007/s00220-006-0095-0 · Zbl 1147.82338
[24] DOI: 10.1080/14786437008238472
[25] DOI: 10.1103/PhysRevB.24.2978
[26] DOI: 10.1103/PhysRevLett.68.2512
[27] DOI: 10.1007/BF01646264 · Zbl 0257.46091
[28] DOI: 10.1023/A:1018618704438 · Zbl 0988.82032
[29] DOI: 10.1007/s002200100534 · Zbl 1051.82003
[30] Stückelberg E. C. G., Helv. Phys. Acta 25 pp 577– (1952)
[31] DOI: 10.1103/PhysRevB.33.551
[32] DOI: 10.1103/PhysRevLett.47.972
[33] DOI: 10.1143/JPSJ.74.1642
[34] DOI: 10.1143/PTPS.165.57
[35] DOI: 10.1143/JPSJ.75.094712
[36] Yafaev D. R., Mathematical Scattering Theory: General Theory (1992) · Zbl 0761.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.