zbMATH — the first resource for mathematics

Decomposition of search for \(v\)-structures in DAGs. (English) Zbl 1137.62420
Summary: We show that the problem of searching for v-structures in a directed acyclic graph can be decomposed into searches in its decomposed subgraphs. This result simplifies the search for \(v\)-structures and the recovery of local causal relationships.

62P99 Applications of statistics
05C20 Directed graphs (digraphs), tournaments
62H99 Multivariate analysis
05C90 Applications of graph theory
Full Text: DOI
[1] Acid, S.; de Campos, L.M., An algorithm for finding minimum d-separating sets in belief networks, (), 3-10
[2] Beinlich, I.; Suermondt, H.; Chavez, R.; Cooper, G., The ALARM monitoring systema case study with two probabilistic inference techniques for belief networks, (), 247-256
[3] Cox, D.R.; Wermuth, N., Multivariate dependenciesmodels analysis and interpretation, (1993), Chapman & Hall London · Zbl 0783.62102
[4] Darroch, J.N.; Lauritzen, S.L.; Speed, T.P., Markov fields and log-linear models for contingency tables, Ann. statist., 8, 522-539, (1980) · Zbl 0444.62064
[5] Dawid, A.P., Conditional independence in statistical theory (with discussion), J. roy. statist. soc. B, 41, 1-31, (1979) · Zbl 0408.62004
[6] Edwards, D., Introduction to graphical modelling, (1995), Springer New York · Zbl 0856.62004
[7] Frydenberg, M.; Lauritzen, S.L., Decomposition of maximum likelihood in mixed graphical interaction models, Biometrika, 76, 539-555, (1989) · Zbl 0677.62053
[8] Geng, Z., Decomposability and collapsibility for log-linear models, Appl. statist., 38, 189-197, (1989)
[9] Geng, Z.; Asano, C.; Ichimura, M.; Kimura, H., Decomposability and collapsibility for contingency tables with missing data, Appl. statist., 43, 548-554, (1994)
[10] Geng, Z.; Li, K., Factorization of posteriors and partial imputation algorithm for graphical models with missing data, Statist. probab. lett., 64, 369-379, (2003) · Zbl 1116.62301
[11] Geng, Z.; Wan, K.; Tao, F., Mixed graphical models with missing data and partial imputation EM algorithm, Scand. J. statist., 27, 433-444, (2000) · Zbl 0972.62001
[12] Heckerman, D., A tutorial on learning with Bayesian networks, (), 301-354 · Zbl 0921.62029
[13] Lauritzen, S.L., Graphical models, (1996), Clarendon Press Oxford · Zbl 0907.62001
[14] Lauritzen, S.L.; Dawid, A.P.; Larsen, B.N.; Leimer, H.G., Independence properties of directed Markov fields, Networks, 20, 491-505, (1990) · Zbl 0743.05065
[15] Lauritzen, S.L.; Richardson, T.S., Chain graph models and their causal interpretations, J. roy. statist. soc. B, 64, 321-361, (2002) · Zbl 1090.62103
[16] Lauritzen, S.L.; Spiegelhalter, D.J., Local computations with probabilities on graphical structures and their application to expert systems (with discussion), J. roy. statist. soc. B, 50, 157-224, (1988) · Zbl 0684.68106
[17] Pearl, J., Causal diagrams for empirical research (with discussion), Biometrika, 83, 669-710, (1995) · Zbl 0860.62045
[18] Pearl, J., Causality, (2000), Cambridge University Press Cambridge · Zbl 0959.68116
[19] Spirtes, P.; Glymour, C., An algorithm for fast recovery of sparse causal graphs, Social sci. comput. rev., 9, 62-72, (1991)
[20] Spirtes, P.; Glymour, C.; Scheines, R., Causation, prediction and search, (1993), Springer New York · Zbl 0806.62001
[21] Verma, T.; Pearl, J., Equivalence and synthesis of causal models, (), 255-268
[22] Wermuth, N.; Lauritzen, S.L., Graphical and recursive models for contingency tables, Biometrika, 70, 537-552, (1983) · Zbl 0541.62038
[23] Whittaker, J., Graphical models in applied multivariate statistics, (1990), Wiley New York · Zbl 0732.62056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.