×

zbMATH — the first resource for mathematics

Mellin–Barnes integrals as Fourier–Mukai transforms. (English) Zbl 1137.14314
Summary: We study the generalized hypergeometric system introduced by I. M. Gel’fand, A. V. Zelevinskij and M. M. Kapranov [Funct. Anal. Appl. 23, No. 2, 94–106 (1989; Zbl 0721.33006)] and its relationship with the toric Deligne–Mumford (DM) stacks recently studied by L. Borisov, L. Chen and G. G. Smith [J. Am. Math. Soc. 18, No. 1, 193–215 (2005; Zbl 1178.14057)]. We construct series solutions with values in a combinatorial version of the Chen–Ruan (orbifold) cohomology and in the \(K\)-theory of the associated DM stacks. In the spirit of the homological mirror symmetry conjecture of Kontsevich, we show that the \(K\)-theory action of the Fourier–Mukai functors associated to basic toric birational maps of DM stacks are mirrored by analytic continuation transformations of Mellin–Barnes type.

MSC:
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14C15 (Equivariant) Chow groups and rings; motives
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
19E08 \(K\)-theory of schemes
33C70 Other hypergeometric functions and integrals in several variables
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adolphson, A., Hypergeometric functions and rings generated by monomials, Duke math. J., 73, 2, 269-290, (1994) · Zbl 0804.33013
[2] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R., Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nuclear phys. B, 416, 414-480, (1994) · Zbl 0899.32006
[3] Batyrev, V.V., Variations of mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke math. J., 69, 349-409, (1993) · Zbl 0812.14035
[4] Bondal, A.; Orlov, D., Semiorthogonal decompositions for algebraic varieties, preprint
[5] Borisov, L.A., String cohomology of a toroidal singularity, J. algebraic geom., 9, 2, 289-300, (2000) · Zbl 0949.14029
[6] Borisov, L.A.; Horja, R.P., On the K-theory of smooth toric DM stacks, in: Proceedings of the 2004 Joint Summer Research Conference on String Geometry, Snowbird, Utah; preprint · Zbl 1171.14301
[7] Borisov, L.A.; Mavlyutov, A.R., String cohomology of Calabi-Yau hypersurfaces via mirror symmetry, Adv. math., 180, 1, 355-390, (2003) · Zbl 1055.14044
[8] Borisov, L.A.; Chen, L.; Smith, G., The orbifold Chow ring of toric Deligne-Mumford stacks, J. amer. math. soc., 18, 1, 193-215, (2005) · Zbl 1178.14057
[9] Cattani, E.; Dickenstein, A.; Sturmfels, B., Rational hypergeometric functions, Compos. math., 128, 2, 217-239, (2001) · Zbl 0990.33013
[10] Dunford, N.; Schwartz, J.T., Linear operators, part I: general theory, (1964), Interscience Publishers New York
[11] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G., Higher transcendental functions, vol. 1, (1953), McGraw-Hill New York, (based, in part, on notes left by Harry Bateman) · Zbl 0052.29502
[12] Gelfand, I.M.; Kapranov, M.M.; Zelevinsky, A.V., Hypergeometric functions and toric varieties, Funktsional. anal. i prilozhen., Funct. anal. appl., 23, 2, 94-106, (1989), (in Russian); translation in: · Zbl 0721.33006
[13] Gelfand, I.M.; Kapranov, M.M.; Zelevinsky, A.V., Discriminants, resultants and multidimensional determinants, (1994), Birkhäuser · Zbl 0827.14036
[14] Horja, R.P., Hypergeometric functions and mirror symmetry in toric varieties, preprint
[15] Hosono, S.; Lian, B.H.; Yau, S.-T., Maximal degeneracy points of GKZ systems, J. amer. math. soc., 10, 2, 427-443, (1997) · Zbl 0874.32007
[16] Kawamata, Y., Log crepant birational maps and derived categories, J. math. sci. univ. Tokyo, 12, 2, 211-231, (2005) · Zbl 1095.14014
[17] Kontsevich, M., Homological algebra of mirror symmetry, (), 120-139 · Zbl 0846.53021
[18] M. Kontsevich, Lecture at Rutgers University, November 11, 1996 (unpublished)
[19] Matusevich, L.F.; Miller, E.; Walther, U., Homological methods for hypergeometric families, preprint · Zbl 1095.13033
[20] Saito, M.; Sturmfels, B.; Takayama, N., Gröbner deformations of hypergeometric differential equations, (2000), Springer · Zbl 0946.13021
[21] Stienstra, J., Resonant hypergeometric systems and mirror symmetry, (), 412-452 · Zbl 0963.14017
[22] Sturmfels, B., Gröbner bases and convex polytopes, Univ. lecture ser., vol. 8, (1996), Amer. Math. Soc. Providence, RI · Zbl 0856.13020
[23] Whittaker, E.T.; Watson, G.N., A course of modern analysis, (1940), Cambridge Univ. Press · Zbl 0108.26903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.