zbMATH — the first resource for mathematics

Pumping effects in models of periodically forced flow configurations. (English) Zbl 1136.76338
Summary: A periodically forced system of differential equations is defined to be a pump, if there exists an asymptotically periodic solution with non-equilibrium mean. It is proved that such systems exist. The definition is based on physical and numerical observations of pumping in (models of) asymmetric flow configurations. For models with rigid pipes and tanks, physical explanations for the pumping effects are derived. One of the pumps is an internally forced linear system. For externally forced nonlinear rigid pipe models, necessary and sufficient conditions for pumping are given. It is then demonstrated in a general setting that no externally forced linear pump exists.

76B99 Incompressible inviscid fluids
34C25 Periodic solutions to ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI
[1] Liebau, G., Über ein ventilloses pumpprinzip, Naturwissenschaften, 41, 327-328, (1954)
[2] Moser, M.; Huang, J.W.; Schwarz, G.S.; Kenner, T.; Noordergraaf, A., Impedance defined flow generalisation of william harvey’s concept of the circulation — 370 years later, Int. J. cardiovasc. med. sci., 1, 205-211, (1998)
[3] H. Andersson, W. van der Wijngaart, P. Nilsson, P. Enoksson, G. Stemme, A valve-less diffuser micropump for microfluidic analytical systems, in: The MicroTAS 2000 Symposium, Enschede
[4] Jung, E.; Peskin, C.S., Two-dimensional simulations of valveless pumping using the immersed boundary method, SIAM J. sci. comput., 23, 19-45, (2001) · Zbl 1065.76156
[5] Ottesen, J.T., Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation, J. math. biol., 46, 309-332, (2003) · Zbl 1039.92015
[6] von Bredow, H.J., Untersuchung eines ventillosen pumpprinzips, Fortschr.-ber. VDI-Z. reihe 7, Nr. 9, 1-89, (1968)
[7] Rath, H.J.; Teipel, I., Der Fördereffekt in ventillosen, elastischen leitungen, Z. angew. math. phys., 29, 123-133, (1978)
[8] Borzì, A.; Propst, G., Numerical investigation of the liebau phenomenon, Z. angew. math. phys., 54, 1050-1072, (2003) · Zbl 1047.76128
[9] Takagi, S.; Saijo, T., Study of a piston pump without valves (1st report, on a pipe-capacity-system with a T-junction), Bull. JSME, 26, 1366-1372, (1983)
[10] Takagi, S.; Takahashi, K., Study of a piston pump without valves, Bull. JSME, 28, 831-836, (1985)
[11] Hale, J.K., Ordinary differential equations, (1969), Wiley-Interscience New York · Zbl 0186.40901
[12] Auerbach, D.; Moehring, W.; Moser, M., An analytic approach to the liebau phenomenon of valveless pumping, Cardiovasc. eng., 4, 201-208, (2004)
[13] Propst, G.; Borzì, A., Numerical investigation of periodically excited valveless pumping, ()
[14] Ockendon, H.; Tayler, A.B., Inviscid fluid flows, (1983), Springer-Verlag New York · Zbl 0386.76001
[15] Reissig, R., Über einen allgemeinen typ erzwungener nichtlinearer schwingungen zweiter ordnung, Rend. accad. naz. lincei, cl. sci. fis. mat. natur., 56, 297-302, (1974) · Zbl 0317.34032
[16] Mawhin, J.; Ward, J.R., Nonuniform nonresonance conditions at the two first eigenvalues for periodic solutions of forced lienard and Duffing equations, Rocky mountain J. math., 12, 643-654, (1982) · Zbl 0536.34022
[17] Thompson, J.M.T.; Stewart, H.B., Nonlinear dynamics and chaos, (1987), John Wiley & Sons Chichester · Zbl 0601.58001
[18] Morse, P.M.; Ingard, K.U., Theoretical acoustics, (1968), McGraw-Hill New York
[19] Ito, K.; Kappel, F., Evolution equations and approximations, (2002), World Scientific New Jersey · Zbl 1014.34045
[20] Schmitt, K.; Thompson, R.C., Nonlinear analysis and differential equations — an introduction, (2000), University of Utah and Utah State University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.