×

An asymmetrical self-similar dynamic crack model of bridging fiber pull-out in unidirectional composite materials. (English) Zbl 1136.74038

Summary: When composite materials produce a crack, their fibrous position will form bridges, moreover the crack usually propagates in the modality of asymmetrical self-similarity. In this paper we build an asymmetrical self-similar dynamic crack model of bridging fiber pull-out in unidirectional composite materials. Analytical solutions for stresses, displacements, stress intensity factors and bridging fiber fracture speeds for this model under the action of moving loads and homogeneous loads, respectively, are acquired by self-similar measures. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be gained.

MSC:

74R99 Fracture and damage
74E30 Composite and mixture properties
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hagwan B., Analysis and Performance of Fiber Composites (1973)
[2] Wang Z-M, Mechanics of Composites and Structural Mechanics of Composite (1991)
[3] Budiansky B., Mech J. Phys. Solids. 34 pp 352– (1973)
[4] DOI: 10.1016/0001-6160(85)90124-5 · doi:10.1016/0001-6160(85)90124-5
[5] DOI: 10.1016/0001-6160(87)90260-4 · doi:10.1016/0001-6160(87)90260-4
[6] DOI: 10.1007/BF00012539 · doi:10.1007/BF00012539
[7] DOI: 10.1016/S0020-7225(96)00099-7 · Zbl 0912.73038 · doi:10.1016/S0020-7225(96)00099-7
[8] Guo Y.-J., Fatig. Frac. Engng. Mater. Struc. 21 pp 1135– (1998)
[9] DOI: 10.1023/A:1007645817753 · doi:10.1023/A:1007645817753
[10] DOI: 10.1016/S0013-7944(00)00131-4 · doi:10.1016/S0013-7944(00)00131-4
[11] DOI: 10.1016/0020-7225(74)90043-3 · Zbl 0296.73012 · doi:10.1016/0020-7225(74)90043-3
[12] Charepanov, G. P. 1973.Mechanics of Brittle Fracture, 732–792. Moscow: Nauka.
[13] Erigen A. C., Elastodynymics, Vol.2., Linear Theory (1975)
[14] Lü N.-C., Chinese. Quart. Mech. 25 pp 69– (2004)
[15] Cheng J., Harbin J. Inst. Tech. Eng. Mech, Special. pp 8– (1985)
[16] DOI: 10.1016/0020-7225(65)90021-2 · Zbl 0135.43403 · doi:10.1016/0020-7225(65)90021-2
[17] DOI: 10.1016/j.mechrescom.2003.11.001 · Zbl 1090.74018 · doi:10.1016/j.mechrescom.2003.11.001
[18] DOI: 10.1007/BF02439872 · Zbl 1147.74383 · doi:10.1007/BF02439872
[19] DOI: 10.1016/0013-7944(80)90086-7 · doi:10.1016/0013-7944(80)90086-7
[20] Shen G.-L., Mechanics of Composite Materials (1996)
[21] DOI: 10.1016/j.tafmec.2007.01.004 · doi:10.1016/j.tafmec.2007.01.004
[22] Goree J. G., ASTM STP, 1032 pp 251– (1989)
[23] Lü N.-C., Eng. Mech 17 pp 117– (2000)
[24] Jiang M-Z., Harbin J. Inst. Tech. 37 pp 423– (2005)
[25] Muskhelishvili N. I., Singular Integral Equations (1968) · Zbl 0174.16202
[26] Muskhelishvili N. I., Some Fundamental Problems in the Mathematical Theory of Elasticity (1966) · Zbl 0151.36201
[27] Hoskins R. F., Generalized Functions (1979)
[28] Wang, X-S. 1993.Singular Functions and Their Applications in Mechanics, 3–45. Beijina: Scientific Press. (in Chinese)
[29] Gahov F. D., Boundary-Value Problems (1963)
[30] Sih, G. C. 1977.Mechanics of Fracture 4: Elastodynamics Crack Problems, 213–247. Leyden: Noordhoff.
[31] DOI: 10.1007/BF00040900 · Zbl 0352.73026 · doi:10.1007/BF00040900
[32] Editorial Group of Mathematics Handbook. 2002.Mathematics Handbook, 244–300. Beijing: Advanced Education Press. (in Chinese)
[33] Mathematical Teaching Office of Tongji University. 1994.Advanced Mathematics, Vol. 1, 167–172. Beijing: Advanced Education Press. (in Chinese)
[34] DOI: 10.1080/15376490500259293 · doi:10.1080/15376490500259293
[35] Kalthof, J. F., Beinert, J. and Winkler, S. 1977.Measurements of Dynamic Stress Intensity Factors for Fastrunning and Arresting Cracks in Double-cantilever-beam Specimens, 161–176. Philadelphia: Fast Fracture and Crack Arrest. ASTM, STP 627
[36] Kobayashi A. S., New York, 35 pp 19– (1979)
[37] DOI: 10.1007/BF00963460 · doi:10.1007/BF00963460
[38] DOI: 10.1007/BF01152313 · doi:10.1007/BF01152313
[39] DOI: 10.1007/BF01157550 · doi:10.1007/BF01157550
[40] DOI: 10.1007/BF01140627 · doi:10.1007/BF01140627
[41] Sneddon N. I., Fourier Transform (1951)
[42] Muskhelishvili N. I., Some Basic Problems from the Mathematical Theory of Elasticity (1953) · Zbl 0052.41402
[43] Galin L. A., Contact Problems in Elasticity Theory (1953)
[44] Broberg K. B., fur Fysik., 18 pp 159– (1960)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.