zbMATH — the first resource for mathematics

A proof that a discrete delta function is second-order accurate. (English) Zbl 1136.65017
Summary: It is proved that a discrete delta function introduced by P. Smereka, ibid. 211, No. 1, 77–90 (2006; Zbl 1086.65503)] gives a second-order accurate quadrature rule for surface integrals using values on a regular background grid. The delta function is found using a technique of A. Mayo [SIAM J. Numer. Anal. 21, No. 2, 285–299 (1984; Zbl 1131.65303)]. It can be expressed naturally using a level set function.

65D15 Algorithms for approximation of functions
46F10 Operations with distributions and generalized functions
Full Text: DOI
[1] Beale, J.T.; Layton, A., On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. appl. math. comput. sci., 1, 91-119, (2006) · Zbl 1153.35319
[2] Engquist, B.; Tornberg, A.-K.; Tsai, R., Discretization of Dirac delta functions in level set methods, J. comput. phys., 207, 28-51, (2005) · Zbl 1074.65025
[3] LeVeque, R.J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. numer. anal., 31, 1019-1044, (1994) · Zbl 0811.65083
[4] Li, Z.; Ito, K., Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. sci. comput., 23, 339-361, (2001) · Zbl 1001.65115
[5] Li, Z.; Ito, K., The immersed interface method, (2006), SIAM Philadelphia
[6] Liu, X.-D.; Fedkiw, R.; Kang, M., A boundary condition capturing method for poisson’s equation on irregular domains, J. comput. phys., 160, 151-178, (2000) · Zbl 0958.65105
[7] Mayo, A., The fast solution of poisson’s and the biharmonic equations on irregular regions, SIAM J. numer. anal., 21, 285-299, (1984) · Zbl 1131.65303
[8] Mayo, A., The rapid evaluation of volume integrals of potential theory on general regions, J. comput. phys., 100, 236-245, (1992) · Zbl 0772.65012
[9] V. Rutka, Immersed Interface Methods for Elliptic Boundary Value Problems, Dissertation, T.U. Kaiserslautern, 2005.
[10] Smereka, P., The numerical approximation of a delta function with application to level set methods, J. comput. phys., 211, 77-90, (2006) · Zbl 1086.65503
[11] Tornberg, A.-K.; Engquist, B., Numerical approximations of singular source terms in differential equations, J. comput. phys., 200, 462-488, (2004) · Zbl 1115.76392
[12] Towers, J., Two methods for discretizing a delta function supported on a level set, J. comput. phys., 220, 915-931, (2007) · Zbl 1115.65028
[13] Wiegmann, A.; Bube, K.P., The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM J. numer. anal., 37, 827-862, (2000) · Zbl 0948.65107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.