zbMATH — the first resource for mathematics

Periodic solutions for a class of coupled nonlinear partial differential equations. (English) Zbl 1136.35459
Summary: In this Letter, by applying the Jacobi elliptic function expansion method, the periodic solutions for three coupled nonlinear partial differential equations are obtained.

35Q58 Other completely integrable PDE (MSC2000)
35B10 Periodic solutions to PDEs
Full Text: DOI
[1] Hu, J.L., Phys. lett. A, 325, 37, (2004)
[2] Hu, J.L., Chin. phys., 13, 3, 297, (2004)
[3] Fu, Z.T.; Liu, S.K.; Liu, S.D.; Zhao, Q., Phys. lett. A, 290, 72, (2001)
[4] Liu, S.K.; Fu, Z.T.; Liu, S.D.; Zhao, Q., Phys. lett. A, 289, 69, (2001)
[5] Parkes, E.J.; Duffy, B.R.; Abbott, P.C., Phys. lett. A, 295, 280, (2002)
[6] Rao, N.N., J. phys. A, 22, 4813, (1989)
[7] Wang, X.Y.; Xu, B.C.; Taylor, P.L., Phys. lett. A, 173, 30, (1993)
[8] Bowman, F., Introduction to elliptic functions with applications, (1959), Universities London · Zbl 0052.07102
[9] Liu, S.K.; Liu, S.D., Nonlinear equations in physics, (2000), Peking Univ. Press Beijing
[10] Prasolov, V.; Solovyev, Y., Elliptic functions and elliptic integrals, (1997), American Mathematical Society Providence, RI · Zbl 0946.11001
[11] Wang, Z.X.; Guo, D.R., Special functions, (1989), World Scientific Singapore · Zbl 0724.33001
[12] Boya, L.; Casahorran, J., Phys. rev. A, 39, 4298, (1989)
[13] Rajaraman, R., Phys. rev. lett., 42, 200, (1979)
[14] Gurses, M.; Karasu, A., Phys. lett. A, 251, 247, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.