×

zbMATH — the first resource for mathematics

Series solutions of nano boundary layer flows by means of the homotopy analysis method. (English) Zbl 1135.76016
Summary: We present a ‘similar’ solution for nano boundary layers with nonlinear Navier boundary condition. Three types of flows are considered: (i) the flow past a wedge; (ii) the flow in a convergent channel; (iii) the flow driven by an exponentially-varying outer flows. The resulting differential equations are solved by homotopy analysis method. Different from the perturbation methods, the present method is independent of small physical parameters so that it is applicable to not only weak but also strong nonlinear flow phenomena. Numerical results are compared with available exact results to demonstrate the validity of the present solution. The effects of the slip length \(\ell \), the index parameters \(n\) and \(m\) on the velocity profile and tangential stress are discussed.

MSC:
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Navier, C.L.M.H., Mémoire sur LES lois du mouvement des fluids, Mém. acad. roy. sci. inst. France, 6, 389-440, (1823)
[2] Shikhmurzaev, Y.D., The moving contact line on a smooth solid surface, Int. J. multiphase flow, 19, 589-610, (1993) · Zbl 1144.76452
[3] C.H. Choi, J.A. Westin, K.S. Breuer, To slip or not to slipwater flows in hydrophilic and hydrophobic microchannels, in: Proceedings of IMECE 2002, New Orleans, LA, Paper No. 2002-33707
[4] Matthews, M.T.; Hill, J.M., Nano boundary layer equation with nonlinear Navier boundary condition, J. math. anal. appl., 333, 381-400, (2007) · Zbl 1207.76050
[5] Schlichting, H., Boundary layer theory, (1979), McGraw-Hill New York
[6] M.T. Matthews, J.M. Hill, A note on the boundary layer equations with linear slip boundary layer condition, Appl. Math. Lett. (2007), doi:10.1016/j.aml.2007.09.002, in press · Zbl 1148.76019
[7] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[8] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[9] Liao, S.J., An explicit, totally analytic approximation of Blasius viscous flow problems, Internat. J. non-linear mech., 34, 4, 759-778, (1999) · Zbl 1342.74180
[10] Liao, S.J., On the homotopy analysis method for nonlinear problems, Appl. math. comput., 147, 499-513, (2004) · Zbl 1086.35005
[11] Liao, S.J.; Tan, Y., A general approach to obtain series solutions of nonlinear differential equations, Stud. appl. math., 119, 297-355, (2007)
[12] Liao, S.J., Beyond perturbation: review on the basic ideas of the homotopy analysis method and its applications, Adv. mech., 38, 1, 1-34, (2008), (in Chinese)
[13] Hayat, T.; Javed, T.; Sajid, M., Analytic solution for rotating flow and heat transfer analysis of a third-grade fluid, Acta mech., 191, 219-229, (2007) · Zbl 1117.76069
[14] Hayat, T.; Khan, M.; Sajid, M.; Asghar, S., Rotating flow of a third grade fluid in a porous space with Hall current, Nonlinear dynam., 49, 83-91, (2007) · Zbl 1181.76149
[15] Hayat, T.; Sajid, M., On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder, Phys. lett. A, 361, 316-322, (2007) · Zbl 1170.76307
[16] Hayat, T.; Sajid, M., Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. heat mass transfer, 50, 75-84, (2007) · Zbl 1104.80006
[17] Hayat, T.; Abbas, Z.; Sajid, M.; Asghar, S., The influence of thermal radiation on MHD flow of a second grade fluid, Int. J. heat mass transfer, 50, 931-941, (2007) · Zbl 1124.80325
[18] Hayat, T.; Sajid, M., Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid, Internat. J. engrg. sci., 45, 393-401, (2007) · Zbl 1213.76137
[19] Hayat, T.; Ahmed, N.; Sajid, M.; Asghar, S., On the MHD flow of a second grade fluid in a porous channel, Comput. math. appl., 54, 407-414, (2007) · Zbl 1123.76072
[20] Hayat, T.; Khan, M.; Ayub, M., The effect of the slip condition on flows of an Oldroyd 6-constant fluid, J. comput. appl., 202, 402-413, (2007) · Zbl 1147.76550
[21] Sajid, M.; Siddiqui, A.M.; Hayat, T., Wire coating analysis using MHD Oldroyd 8-constant fluid, Int. J. engrg. sci., 45, 381-392, (2007)
[22] Sajid, M.; Hayat, T.; Asghar, S., Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet, Int. J. heat mass transfer, 50, 1723-1736, (2007) · Zbl 1140.76042
[23] Sajid, M.; Hayat, T.; Asghar, S., Non-similar solution for the axisymmetric flow of a third-grade fluid over radially stretching sheet, Acta mech., 189, 193-205, (2007) · Zbl 1117.76006
[24] Abbasbandy, S., Soliton solutions for the 5th-order KdV equation with the homotopy analysis method, Nonlinear dynam., 51, 83-87, (2008) · Zbl 1170.76317
[25] Abbasbandy, S., The application of the homotopy analysis method to solve a generalized hirota – satsuma coupled KdV equation, Phys. lett. A, 361, 478-483, (2007) · Zbl 1273.65156
[26] Y.P. Liu, Z.B. Li, The homotopy analysis method for approximating the solution of the modified Korteweg – de Vries equation, Chaos Solitons Fractals, in press · Zbl 1197.65166
[27] Zou, L.; Zong, Z.; Wang, Z.; He, L., Solving the discrete KdV equation with homotopy analysis method, Phys. lett. A, 370, 287-294, (2007) · Zbl 1209.65122
[28] Song, L.; Zhang, H.Q., Application of homotopy analysis method to fractional kdv – burgers – kuramoto equation, Phys. lett. A, 367, 88-94, (2007) · Zbl 1209.65115
[29] Abbasbandy, S., The application of the homotopy analysis method to nonlinear equations arising in heat transfer, Phys. lett. A, 360, 109-113, (2006) · Zbl 1236.80010
[30] Abbasbandy, S., Homotopy analysis method for heat radiation equations, Int. commun. heat mass transfer, 34, 380-387, (2007)
[31] Sajid, M.; Hayat, T.; Asghar, S., Comparison between the HAM and HPM solutions of tin film flows of non-Newtonian fluids on a moving belt, Nonlinear dynam., 50, 27-35, (2007) · Zbl 1181.76031
[32] M. Sajid, T. Hayat, Comparison of HAM and HPM methods for nonlinear heat conduction and convection equations, Nonlinear Anal. Real World Appl., in press · Zbl 1156.76436
[33] Zhu, S.P., An exact and explicit solution for the valuation of American put options, Quant. finance, 6, 229-242, (2006) · Zbl 1136.91468
[34] Zhu, S.P., A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield, Anziam j., 47, 477-494, (2006) · Zbl 1147.91336
[35] Y. Wu, K.F. Cheung, Explicit solution to the exact Riemann problems and application in nonlinear shallow water equations, Int. J. Numer. Methods Fluids, in press · Zbl 1210.76033
[36] Yamashita, M.; Yabushita, K.; Tsuboi, K., An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J. phys. A, 40, 8403-8416, (2007) · Zbl 1331.70041
[37] Bouremel, Y., Explicit series solution for the glauert-jet problem by means of the homotopy analysis method, Commun. nonlinear sci. numer. simul., 12, 5, 714-724, (2007) · Zbl 1115.76065
[38] Tao, L.; Song, H.; Chakrabarti, S., Nonlinear progressive waves in water of finite depth—an analytic approximation, Clastal engrg., 54, 825-834, (2007)
[39] Song, H.; Tao, L., Homotopy analysis of 1D unsteady, nonlinear groundwater flow through porous media, J. coastal res., 50, 292-295, (2007)
[40] A. Molabahrami, F. Khani, The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. B Real World Appl. (2007), doi:10.1016/j.nonrwa.2007.10.014, in press · Zbl 1167.35483
[41] Bataineh, A.S.; Noorani, M.S.M.; Hashim, I., Solutions of time-dependent emden – fowler type equations by homotopy analysis method, Phys. lett. A, 371, 72-82, (2007) · Zbl 1209.65104
[42] Wang, Z.; Zou, L.; Zhang, H., Applying homotopy analysis method for solving differential – difference equation, Phys. lett. A, 369, 77-84, (2007) · Zbl 1209.65119
[43] On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method, Phys. lett. A, 365, 412-415, (2007) · Zbl 1203.65275
[44] W.H. Cai, Nonlinear dynamics of thermal-hydraulic networks, PhD thesis, University of Notre Dame, 2006
[45] Song, Y.; Zheng, L.C.; Zhang, X.X., On the homotopy analysis method for solving the boundary layer flow problem over a stretching surface with suction and injection, J. univ. sci. technol. Beijing, 28, 782-784, (2006), (in Chinese)
[46] Liao, S.J.; Magyari, E., Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, Z. angew. math. phys., 57, 5, 777-792, (2006) · Zbl 1101.76056
[47] Liao, S.J., A new branch of solutions of boundary-layer flows over a permeable stretching plate, Internat. J. non-linear mech., 42, 819-830, (2007) · Zbl 1200.76046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.