×

zbMATH — the first resource for mathematics

Automorphisms and abstract commensurators of 2-dimensional Artin groups. (English) Zbl 1135.20027
Summary: We consider the class of 2-dimensional Artin groups with connected, large type, triangle-free defining graphs (type CLTTF). We classify these groups up to isomorphism, and describe a generating set for the automorphism group of each such Artin group. In the case where the defining graph has no separating edge or vertex we show that the Artin group is not abstractly commensurable to any other CLTTF Artin group. If, moreover, the defining graph satisfies a further “vertex rigidity” condition, then the abstract commensurator group of the Artin group is isomorphic to its automorphism group and generated by inner automorphisms, graph automorphisms (induced from automorphisms of the defining graph), and the involution which maps each standard generator to its inverse.
We observe that the techniques used here to study automorphisms carry over easily to the Coxeter group situation. We thus obtain a classification of the CLTTF type Coxeter groups up to isomorphism and a description of their automorphism groups analogous to that given for the Artin groups.

MSC:
20F36 Braid groups; Artin groups
20F05 Generators, relations, and presentations of groups
20F28 Automorphism groups of groups
20F55 Reflection and Coxeter groups (group-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI EMIS EuDML arXiv
References:
[1] E Artin, Braids and permutations, Ann. of Math. \((2)\) 48 (1947) 643 · Zbl 0030.17802 · doi:10.2307/1969131
[2] P Bahls, Automorphisms of Coxeter groups, Trans. Amer. Math. Soc. 358 (2006) 1781 · Zbl 1133.20022 · doi:10.1090/S0002-9947-05-03779-7
[3] P Bahls, Strongly rigid even Coxeter groups, Topology Proc. 28 (2004) 19 · Zbl 1076.20029
[4] N Brady, J P McCammond, B Mühlherr, W D Neumann, Rigidity of Coxeter groups and Artin groups (2002) 91 · Zbl 1031.20035 · doi:10.1023/A:1020948811381
[5] N Brady, J Crisp, Two-dimensional Artin groups with \(\mathrm{CAT}(0)\) dimension three (2002) 185 · Zbl 1070.20043 · doi:10.1023/A:1020962804856
[6] M R Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc. 127 (1999) 2143 · Zbl 0928.52007 · doi:10.1090/S0002-9939-99-05187-4
[7] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999) · Zbl 0988.53001
[8] R Charney, J Crisp, Automorphism groups of some affine and finite type Artin groups, Math. Res. Lett. 12 (2005) 321 · Zbl 1077.20055 · doi:10.4310/MRL.2005.v12.n3.a4
[9] R Charney, M W Davis, The \(K(\pi,1)\)-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995) 597 · Zbl 0833.51006 · doi:10.2307/2152924
[10] A M Cohen, L Paris, On a theorem of Artin, J. Group Theory 6 (2003) 421 · Zbl 1039.20016 · doi:10.1515/jgth.2003.030
[11] C Droms, Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100 (1987) 407 · Zbl 0619.20015 · doi:10.2307/2046419
[12] N D Gilbert, J Howie, V Metaftsis, E Raptis, Tree actions of automorphism groups, J. Group Theory 3 (2000) 213 · Zbl 0979.20027 · doi:10.1515/jgth.2000.017
[13] E Godelle, Parabolic subgroups of Artin groups of type FC, Pacific J. Math. 208 (2003) 243 · Zbl 1063.20040 · doi:10.2140/pjm.2003.208.243
[14] E Godelle, Artin-Tits groups with CAT(0) Deligne complex, J. Pure Appl. Algebra 208 (2007) 39 · Zbl 1149.20032 · doi:10.1016/j.jpaa.2005.11.012
[15] H van der Lek, The homotopy type of complex hyperplane complements, PhD thesis, University of Nijmegen (1983)
[16] G Moussong, Hyperbolic Coxeter groups, PhD thesis, Ohio State University (1988)
[17] B Mühlherr, The isomorphism problem for Coxeter groups, Amer. Math. Soc. (2006) 1 · Zbl 1103.20031
[18] B Mühlherr, R Weidmann, Rigidity of skew-angled Coxeter groups, Adv. Geom. 2 (2002) 391 · Zbl 1015.20029 · doi:10.1515/advg.2002.018 · eudml:122735
[19] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621 · Zbl 0911.57002 · doi:10.1016/S0040-9383(97)00018-9
[20] L Paris, Artin groups of spherical type up to isomorphism, J. Algebra 281 (2004) 666 · Zbl 1080.20033 · doi:10.1016/j.jalgebra.2004.04.021
[21] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. \((3)\) 71 (1995) 585 · Zbl 0861.20041 · doi:10.1112/plms/s3-71.3.585
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.