zbMATH — the first resource for mathematics

Scaling limits for random fields with long-range dependence. (English) Zbl 1134.60027
The paper studies the possible limits of a spatial random field generated by uniformly scattered random sets, as the density \(\lambda\) of the sets grows to infinity and the mean volume \(\rho\) of the sets tends to zero. It is shown that the centrated and renormalized random field can have three different limits, depending on the relative speed at which \(\lambda\) and \(\rho\) are scaled.

60F17 Functional limit theorems; invariance principles
60G60 Random fields
60G18 Self-similar stochastic processes
Full Text: DOI arXiv
[1] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge Univ. Press. · Zbl 0617.26001
[2] Gaigalas, R. and Kaj, I. (2003). Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9 671–703. · Zbl 1043.60077 · doi:10.3150/bj/1066223274 · euclid:bj/1066223274
[3] Gripenberg, G. and Norros, I. (1996). On the prediction of fractional Brownian motion. J. Appl. Probab. 33 400–410. JSTOR: · Zbl 0861.60049 · doi:10.2307/3215063 · links.jstor.org
[4] Kaj, I. (2005). Limiting fractal random processes in heavy-tailed systems. In Fractals in Engineering, New Trends in Theory and Applications (J. Lévy-Léhel and E. Lutton, eds.) 199–218. Springer, London. · Zbl 1186.60018
[5] Kaj, I. and Martin-Löf, A. (2005). Scaling limit results for the sum of many inverse Lévy subordinators. Preprint, Institut Mittag–Leffler.
[6] Kaj, I. and Taqqu, M. S. (2004). Convergence to fractional Brownian motion and to the Telecom process: The integral representation approach. Preprint, Dept. Mathematics, Uppsala Univ. · Zbl 1154.60020 · doi:10.1007/978-3-7643-8786-0_19
[7] Kallenberg, O. (2002). Foundations of Modern Probability , 2nd ed. Springer, New York. · Zbl 0996.60001
[8] Konstantopoulos, T. and Lin, S.-J. (1998). Macroscopic models for long-range dependent network traffic. Queueing Syst. 28 215–243. · Zbl 0908.90131 · doi:10.1023/A:1019190821105
[9] Kurtz, T. G. (1996). Limit theorems for workload input models. In Stochastic Networks : Theory and Applications (F. P. Kelly, S. Zachary and I. Ziedins, eds.) 119–139. Oxford Univ. Press. · Zbl 0855.60089
[10] Landkof, N. S. (1972). Foundations of Modern Potential Theory . Springer, New York. · Zbl 0253.31001
[11] Mandelbrot, B. B. and van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 422–437. JSTOR: · Zbl 0179.47801 · doi:10.1137/1010093 · links.jstor.org
[12] Mikosch, T., Resnick, S. I., Rootzén, H. and Stegeman, A. (2002). Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12 23–68. · Zbl 1021.60076 · doi:10.1214/aoap/1015961155
[13] Rudin, W. (1987). Real and Complex Analysis , 3rd ed. McGraw–Hill, New York. · Zbl 0925.00005
[14] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes : Stochastics Models with Infinite Variance . Chapman and Hall, London. · Zbl 0925.60027
[15] Taqqu, M. S. and Levy, J. B. (1986). Using renewal processes to generate long-range dependence and high variability. In Dependence in Probability and Statistics (E. Eberlein and M. S. Taqqu, eds.) 73–89. Birkhäuser, Boston. · Zbl 0601.60085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.