×

zbMATH — the first resource for mathematics

Weighted traces on algebras of pseudo-differential operators and geometry on loop groups. (English) Zbl 1134.58303

MSC:
58J42 Noncommutative global analysis, noncommutative residues
58J40 Pseudodifferential and Fourier integral operators on manifolds
35S35 Topological aspects for pseudodifferential operators in context of PDEs: intersection cohomology, stratified sets, etc.
47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)
47G30 Pseudodifferential operators
22E67 Loop groups and related constructions, group-theoretic treatment
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1142/S0219025700000054 · Zbl 1032.58019 · doi:10.1142/S0219025700000054
[2] DOI: 10.1007/s002200050282 · Zbl 0938.58008 · doi:10.1007/s002200050282
[3] DOI: 10.1007/BF01210930 · Zbl 0657.58037 · doi:10.1007/BF01210930
[4] DOI: 10.1007/BF02101630 · Zbl 0853.35140 · doi:10.1007/BF02101630
[5] DOI: 10.1006/jfan.1996.0113 · Zbl 0859.22012 · doi:10.1006/jfan.1996.0113
[6] Freed D., J. Diff. Geom. 28 pp 223– (1988)
[7] Sém. Bourbaki pp 708– (1989)
[8] DOI: 10.1007/BF01079603 · Zbl 0729.35154 · doi:10.1007/BF01079603
[9] DOI: 10.1016/0040-9383(65)90067-4 · Zbl 0129.38901 · doi:10.1016/0040-9383(65)90067-4
[10] DOI: 10.1023/A:1006504318696 · Zbl 0920.58047 · doi:10.1023/A:1006504318696
[11] DOI: 10.1142/S0219025701000486 · Zbl 1039.58022 · doi:10.1142/S0219025701000486
[12] DOI: 10.1112/jlms/s2-26.3.557 · Zbl 0508.58011 · doi:10.1112/jlms/s2-26.3.557
[13] DOI: 10.1007/BF01090674 · Zbl 0809.47044 · doi:10.1007/BF01090674
[14] DOI: 10.1103/PhysRevLett.3.296 · doi:10.1103/PhysRevLett.3.296
[15] Seeley R. T., Math. Soc. pp 288– (1966)
[16] DOI: 10.1016/S0926-2245(00)00020-6 · Zbl 0967.58005 · doi:10.1016/S0926-2245(00)00020-6
[17] DOI: 10.1016/0393-0440(94)00033-Z · Zbl 0826.58006 · doi:10.1016/0393-0440(94)00033-Z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.