zbMATH — the first resource for mathematics

On some questions related to the Krichever correspondence. (English. Russian original) Zbl 1134.14023
Math. Notes 81, No. 4, 467-476 (2007); translation from Mat. Zametki 81, No. 4, 528-539 (2007).
The paper is concerned with the Krichever correspondence for surfaces; namely, on the association of a subspace of a two-dimensional skew field to each set of data \((X,C,p,F,e_p,t,u)\) where \(X\) is a projective irreducible normal algebraic surface, \(C\) is an ample Cartier divisor on \(X\), \(p\) is a smooth point on \(X\) and \(C\), \(F\) is a torsion free sheaf on \(X\), \(e_p\) is a local formal trivialization of \(F\) at \(p\), and \(u,t\) are local parameters at \(p\) such that \(u=0\) is a local equation of \(C\) on \(X\) near \(p\). This construction, which generalizes the classical Krichever construction [I. M. Krichever, Russ. Math. Surv. 32, No. 6, 185–213 (1977; Zbl 0386.35002)], was introduced by A. N. Parshin [Funct. Anal. Appl. 35, No. 1, 74–76 (2001); translation from Funkts. Anal. Prilozh. 35, No. 1, 88–90 (2001; Zbl 1078.14525); Commun. Algebra 29, No. 9, 4157–4181 (2001; Zbl 1014.14015)].
In the paper under review, some conditions on a subring of a two dimensional skew field are given for it being finitely generated over the ground field and being of transcendence degree two. On the other hand, the authors show that the subspace associated to the geometrical data above fulfill some conditions in terms of finite dimension of vector spaces that resembles M. Mulase’s conditions for the case of algebraic curves [J. Differ. Geom. 19, 403–430 (1984; Zbl 0559.35076)]. However, a full characterization of subspaces arising from geometrical data is still open. The paper is well written and contains very detailed examples and proofs that are very illustrating for the reader.

14H70 Relationships between algebraic curves and integrable systems
12E15 Skew fields, division rings
Full Text: DOI
[1] M. Mulase, ”Solvability of the super KP equation and a generalization of the Birkhoff decomposition,” Invent. Math. 92(1), 1–46 (1988). · Zbl 0666.35074 · doi:10.1007/BF01393991
[2] A. N. Parshin, ”On a ring of formal pseudo-differential operators,” Trudy Mat. Inst. Steklov 224(1), 291–305 (1999) [Proc. Steklov Inst. Math, 224 (1), 266–280 (1999)]; arXiv:math.AG/9911098. · Zbl 1008.37042
[3] A. B. Zheglov, ”On the structure of two-dimensional local skew fields,” Izv. Ross. Akad. Nauk Ser. Mat. 65(1), 25–60 (2001) [Russian Acad. Sci. Izv. Math. 65 (1), 23–55 (2001)]. · Zbl 1008.12004 · doi:10.4213/im318
[4] M. Mulase, ”Category of vector bundles on algebraic curves and infinite dimensional Grassmannians,” Int. J. Math. 1(3), 293–342 (1990). · Zbl 0723.14010 · doi:10.1142/S0129167X90000174
[5] G. Segal and G. Wilson, ”Loop groups and equations of the KdV type,” Publ. Math. IHES 80, 301–342 (1985); Appendix to Loop Groups by E. Pressley and G. Segal (Mir, Moscow, 1990), pp. 379–442.
[6] D. V. Osipov, ”The infinite-dimensional Sato Grassmannian and coherent sheaves of rank 2 on curves,” Mat. Sb. 194(11), 81–94 (2003) [Russian Acad. Sci. Sb. Math. 194 (11–12), 1665–1678 (2003)]; arXiv:math.AG/9904152. · doi:10.4213/sm781
[7] A. N. Parshin, ”Krichever correspondence for algebraic surfaces,” Funktsional. Anal. i Prilozhen. 35(1), 74–76 (2001) [Functional Anal. Appl. 35 (1), 88–90 (2001)]; arXiv:math.AG/9911097. · Zbl 1078.14525 · doi:10.1023/A:1004184819634
[8] A. N. Parshin, ”Integrable systems and local fields,” Comm. Algebra 29(9), 4157–4181 (2001). · Zbl 1014.14015 · doi:10.1081/AGB-100105994
[9] A. N. Parshin, ”The arithmetic of two-dimensional schemes. I. Repartitions and residues,” Izv. Akad. Nauk SSSR Ser. Mat. 40(4), 736–773 (1976) [Math. USSR-Izv. 10 (4), 695–729 (1976)]. · Zbl 0358.14012
[10] T. Fimmel and A. N. Parshin, An Introduction to the Higher Adelic Theory, Preprint.
[11] A. Huber, ”On the Parshin-Beilinson adeles for schemes,” Abh. Math. Sem. Univ. Hamburg 61, 249–273 (1991). · Zbl 0763.14006 · doi:10.1007/BF02950770
[12] D. V. Osipov, ”n-dimensional local fields and adeles on n-dimensional schemes,” in Lecture Notes Series of London Math. Soc. (in press); arXiv:math.AG/0508205. · Zbl 1144.11078
[13] D. V. Osipov, ”Krichever correspondence for algebraic varieties,” Izv. Ross. Akad. Nauk Ser. Mat. 65(2), 91–128 (2001) [Russian Acad. Sci. Izv. Math. 65 (2), 941–975 (2001)]; arXiv:math.AG/0003188. · Zbl 1068.14053 · doi:10.4213/im358
[14] M. Sato and M. Noumi, ”Soliton equations and universal Grassmann manifold,” Sophia Kokyuroku in Mathematics (Sophia University, Tokyo, 1984), Vol. 18, pp. 74–75.
[15] M. Sato and Y. Sato, ”Soliton equations as dynamical systems on infinite dimensional Grassmann manifold,” in Nonlinear Partial Differential Equations in Applied Science, Proc. U. S.-Jap. Semin. (Tokyo, 1982; North-Holland Math. Stud., Amsterdam, 1983), Vol. 81, pp. 259–271.
[16] A. B. Zheglov, Two dimensional KP systems and their solvability; arXiv:math-ph/0503067.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.