×

zbMATH — the first resource for mathematics

Quasi-static evolution for fatigue debonding. (English) Zbl 1133.74041
Summary: The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue phenomenon. In this paper, we present a time-continuous model for fatigue, in the special situation of debonding of thin layers, coming from a time-discretized version recently proposed by A. Jaubert and J.-J. Marigo [C. R., Méc., Acad. Sci. Paris 333, 550–556 (2005)]. Under very general assumptions on the surface energy density and on the applied displacement, we discuss the well-posedness of our problem, and we give the main properties of the evolution process.

MSC:
74R99 Fracture and damage
74G65 Energy minimization in equilibrium problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces. D. Reidel Publishing Co., Dordrecht (1986). · Zbl 0594.49001
[2] B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin (1989). · Zbl 0703.49001
[3] G. Dal Maso and R. Toader, A model for the quasi-static evolution of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal162 (2002) 102-135. Zbl1042.74002 · Zbl 1042.74002
[4] G. Dal Maso, G.A. Francfort and R. Toader, Quasi-static crack growth in finite elasticity. Arch. Rational Mech. Anal176 (2005) 165-225. · Zbl 1064.74150
[5] G.A. Francfort and A. Garroni, A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal182 (2006) 125-152. · Zbl 1098.74006
[6] G.A. Francfort and C. Larsen, Existence and convergence for quasi-static evolution in brittle fractures. Comm. Pure Applied Math56 (2003) 1495-1500. · Zbl 1068.74056
[7] G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids46 (1998) 1319-1342. · Zbl 0966.74060
[8] G.A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Mathematik595 (2006) 55-91. Zbl1101.74015 · Zbl 1101.74015
[9] A. Friedman, Variational principles and free-boundary problems. Wiley-Interscience (1982). · Zbl 0564.49002
[10] A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London Ser A 221 (1920) 163-198.
[11] A. Jaubert and J.-J. Marigo, L’approche variationnelle de la fatigue: des premiers résultats. C. R. Mecanique333 (2005) 550-556.
[12] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math42 (1989) 577-685. Zbl0691.49036 · Zbl 0691.49036
[13] J. Neveu, Bases mathématiques du calcul des probabilités. Masson Cie, Paris (1970). Zbl0203.49901 · Zbl 0203.49901
[14] R. Wheeden and A. Zygmund, Measure and integral. Marcel Dekker (1977). · Zbl 0362.26004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.