zbMATH — the first resource for mathematics

Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions. (English) Zbl 1133.65117
Summary: Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra-Fredholm-Hammerstein integral equations. The properties of rationalized Haar functions are first presented. These properties together with the Newton-Cotes nodes and Newton-Cotes integration method are then utilized to reduce the solution of Volterra-Fredholm-Hammerstein integral equations to the solution of algebraic equations. The method is computationally attractive, and applications are demonstrated through illustrative examples.

65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations
Full Text: DOI
[1] Tricomi, F.G., Integral equations, (1982), Dover
[2] Lardy, L.J., A variation of nystrom’s method for Hammerstein equations, J. integral equations, 3, 123-129, (1982) · Zbl 0471.65096
[3] Kumar, S.; Sloan, I.H., A new collocation-type method for Hammerstein integral equations, J. math. comput., 48, 123-129, (1987)
[4] Brunner, H., Implicitly linear collocation method for nonlinear Volterra equations, J. appl. num. math., 9, 235-247, (1982) · Zbl 0761.65103
[5] Guoqiang, H., Asymptotic error expansion variation of a collocation method for volterra – hammerstein equations, J. appl. num. math., 13, 357-369, (1993) · Zbl 0799.65150
[6] Razzaghi, M.; Nazarzadeh, H., Walsh functions, (), 429-440
[7] Beauchamp, K.G., Walsh functions and their applications, (1975), Academic Press New York, pp. 72-86 · Zbl 0326.42007
[8] Kobayashi, Y.; Ohkita, M.; Inoue, M., Function generation by numerical integration, Math. comput. simulation, 25, 31-38, (1983)
[9] Ohkita, M., Haar approximation of analytic functions and its generation, IEE Japan, 105-C, 101-108, (1985)
[10] Ohkita, M., Evaluation analytic functions by generalized digital integration, Orthogonal expansions and transforms in computation, signal processing and design, Math. comput. simulation, 27, 511-517, (1985), (special issue) · Zbl 0578.65088
[11] R.T. Lynch, J.J. Reis, Haar transform image coding, in: Proc. National Telecommun. Conf., Dallas, TX 1976, pp. 44.3-1-44.3
[12] J.J. Reis, R.T. Lynch, J. Butman, Adaptive Haar transform video bandwidth reduction system for RPV’s, in: Proc. Ann. Meeting Soc. Photo Optic Inst. Eng., SPIE, San Diego, CA, 1976, pp. 24-35
[13] Ohkita, M.; Kobayashi, Y., An application of rationalized Haar functions to solution of linear differential equations, IEEE trans. circuits syst., 9, 853-862, (1986) · Zbl 0613.65072
[14] Ohkita, M.; Kobayashi, Y., An application of rationalized Haar functions to solution of linear partial differential equations, Math. comput. simulation, 30, 419-428, (1988) · Zbl 0659.65109
[15] Razzaghi, M.; Ordokhani, Y., Solution of differential equations via rationalized Haar functions, Math. comput. simulation, 56, 235-246, (2001) · Zbl 0987.65063
[16] Yalcinbas, S., Taylor polynomial solution of nonlinear volterra – fredholm integral equations, Appl. math. comput., 127, 195-206, (2002) · Zbl 1025.45003
[17] Phillips, G.M.; Taylor, P.J., Theory and application of numerical analysis, (1973), Academic Press New York · Zbl 0312.65002
[18] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T., Spectral methods in fluid dynamic, (1987), Springer-Verlag
[19] Elnagar, G.N.; Razzaghi, M., A pseudospectral method for Hammerstein equations, Math. anal. appl., 199, 579-591, (1996) · Zbl 0856.65148
[20] Elnagar, G.N.; Kazemi, M., Chebyshev spectral solution of nonlinear volterra – hammerstein integral equations, J. comput. appl. math., 76, 147-158, (1996) · Zbl 0873.65122
[21] Kalman, R.E.; Kalaba, R.E., Quasilinearization and nonlinear boundary-value problems, (1969), Elsevier New York · Zbl 0165.18103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.