zbMATH — the first resource for mathematics

Conditioned stable Lévy processes and the Lamperti representation. (English) Zbl 1133.60316
Summary: By variously killing a stable Lévy process when it leaves the positive half-line, conditioning it to stay positive, and conditioning it to hit 0 continuously, we obtain three different, positive, self-similar Markov processes which illustrate the three classes described by J. Lamperti [Z. Wahrscheinlichkeitstheor. Verw. Geb. 22, 205–225 (1972; Zbl 0274.60052)]. For each of these processes, we explicitly compute the infinitesimal generator and from this deduce the characteristics of the underlying Lévy process in the Lamperti representation. The proof of this result bears on the behaviour at time 0 of stable Lévy processes before their first passage time across level 0, which we describe here. As an application, for a certain class of Lévy processes we give the law of the minimum before an independent exponential time. This provides the explicit form of the spatial Wiener-Hopf factor at a particular point and the value of the ruin probability for this class of Lévy processes.

60G18 Self-similar stochastic processes
60G51 Processes with independent increments; Lévy processes
60G52 Stable stochastic processes
Full Text: DOI
[1] Bertoin, J. (1996). Lévy Processes . Cambridge University Press. · Zbl 0861.60003
[2] Bertoin, J. (2002). Self-similar fragmentations. Ann. Inst. H. Poincaré Prob. Statist. 38, 319\nobreakdash–340. · Zbl 1002.60072 · doi:10.1016/S0246-0203(00)01073-6 · numdam:AIHPB_2002__38_3_319_0 · eudml:77718
[3] Bingham, N. H. (1973). Maxima of sums of random variables and suprema of stable processes. Z. Wahrscheinlichkeitsth. 26, 273\nobreakdash–296. · Zbl 0238.60036 · doi:10.1007/BF00534892
[4] Bryn-Jones, A. and Doney, R. A. (2006). A functional limit theorem for random walk conditioned to stay non-negative. J. London Math. Soc. 74 , 244–258. · Zbl 1120.60047 · doi:10.1112/S0024610706022964
[5] Caravenna, F. and Chaumont, L. (2006). Invariances principles for conditioned random walks. Preprint 1050, LPMA. · Zbl 1175.60029
[6] Carmona, P., Petit, F. and Yor, M. (2001). Exponential functionals of Lévy processes. In Lévy Processes , Birkhäuser, Boston, MA, pp. 41\nobreakdash–55. · Zbl 0979.60038
[7] Chaumont, L. (1996). Conditionings and path decompositions for Lévy processes. Stoch. Process. Appl. 64, 39\nobreakdash–54. · Zbl 0879.60072 · doi:10.1016/S0304-4149(96)00081-6
[8] Doney, R. A. (2005). Fluctuation theory for Lévy processes. To appear in École d’été de Probabilités de Saint-Flour . · Zbl 1063.60062
[9] Duquesne, T. and Le Gall, J. F. (2002). Random Trees, Lévy Processes and Spatial Branching Processes (Astérisque 281 ). Société Mathématique de France, Paris. · Zbl 1037.60074
[10] Lamperti, J. W. (1972). Semi-stable Markov processes. Z. Wahrscheinlichkeitsth. 22, 205\nobreakdash–225. · Zbl 0274.60052 · doi:10.1007/BF00536091
[11] Lewis, A. and Mordecki, E. (2005). Wiener–Hopf factorization for Lévy processes having negative jumps with rational transforms. Tech. Rep.
[12] Rivero, V. (2005). Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli 11, 471\nobreakdash–509. · Zbl 1077.60055 · doi:10.3150/bj/1120591185
[13] Sato, K. I. (1999). Lévy Processes and Infinitely Divisible Distributions . Cambridge University Press. · Zbl 0973.60001
[14] Zolotarev, V. M. (1986). One-Dimensional Stable Distributions (Transl. Math. Monogr. 65 ). American Mathematical Society, Providence, RI. · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.