zbMATH — the first resource for mathematics

Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. (English) Zbl 1133.35052
The author studies the Cauchy problem for second-order divergence and non-divergence type equations:
\[ \begin{aligned} L u(t,x)&= u_t(t,x) +a^{ij}(t,x)u_{x^ix^j}(t,x)+ b^i(t,x)u_{x^i}(t,x)+c(t,x) u(t,x),\\ {\mathcal L } u(t,x)&= u_t(t,x) +\big(a^{ij}(t,x)u_{x^i}(t,x)+ \bar b^j(t,x)u(t,x)\big)u_{x^j} + b^i(t,x)u_{x^i}(t,x)+c(t,x) u(t,x) \end{aligned} \] in the stripe \((0,T)\times{\mathbb R}^d,\) \(d\geq 1.\) The main coefficients supposed to be in \(\text{VMO}_x\), i.e. measurable in time and with vanishing mean oscillation in \(x.\) The unique solvability in Sobolev spaces with mixed \(L_q(L_p)\)-norms for \(L\) is proved if \(q\geq p\) and for \({\mathcal L}\) without this restriction. The technique is based on a priori pointwise estimates of the sharp functions of the second-order spatial derivatives of solutions.

35K15 Initial value problems for second-order parabolic equations
35B45 A priori estimates in context of PDEs
Full Text: DOI
[1] Amann, H., Maximal regularity for nonautonomous evolution equations, Adv. nonlinear stud., 4, 4, 417-430, (2004) · Zbl 1072.35103
[2] Bramanti, M.; Cerutti, M.C., \(W_p^{1, 2}\) solvability for the cauchy – dirichlet problem for parabolic equations with VMO coefficients, Comm. partial differential equations, 18, 9-10, 1735-1763, (1993) · Zbl 0816.35045
[3] Byun, Sun-Sig, Elliptic equations with BMO coefficients in Lipschitz domains, Trans. amer. math. soc., 357, 3, 1025-1046, (2005) · Zbl 1087.35027
[4] Byun, Sun-Sig, Parabolic equations with BMO coefficients in Lipschitz domains, J. differential equations, 209, 2, 229-265, (2005) · Zbl 1061.35021
[5] Denk, R.; Hieber, M.; Prüss, J., \(\mathcal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. amer. math. soc., 166, 788, (2003)
[6] Giga, Y.; Sohr, H., Abstract \(L^p\) estimates for the Cauchy problem with applications to the navier – stokes equations in exterior domains, J. funct. anal., 102, 72-94, (1991) · Zbl 0739.35067
[7] Guidetti, D., General linear boundary value problems for elliptic operators with VMO coefficients, Math. nachr., 237, 62-88, (2002) · Zbl 1009.35024
[8] Haller-Dintelmann, R.; Heck, H.; Hieber, M., \(L^p\)-\(L^q\)-estimates for parabolic systems in non-divergence form with VMO coefficients, J. London math. soc. (2), 74, 3, 717-736, (2006) · Zbl 1169.35339
[9] Kim, Doyoon, Second order elliptic equations in \(\mathbb{R}^d\) with piecewise continuous coefficients, Potential anal., 26, 189-212, (2007) · Zbl 1152.35341
[10] Doyoon Kim, Parabolic equations with measurable coefficients, II, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2006.12.077, in press · Zbl 1160.35424
[11] Doyoon Kim, N.V. Krylov, Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., in press, http://arxiv.org/pdf/math.AP/0512515 · Zbl 1138.35308
[12] Doyoon Kim, N.V. Krylov, Parabolic equations with measurable coefficients, Potential Anal. (2007), doi:10.1007/ s11118-007-9042-8, in press, http://arxiv.org/pdf/math.AP/0604124 · Zbl 1124.35024
[13] Krylov, N.V., Parabolic equations in \(L_p\)-spaces with mixed norms, Algebra i analiz, Saint |St. Petersburg math. J., 14, 4, 603-614, (2003), (in Russian); English translation: · Zbl 1032.35046
[14] Krylov, N.V., Parabolic and elliptic equations with VMO coefficients, Comm. partial differential equations, 32, 3, 453-475, (2007) · Zbl 1114.35079
[15] Ladyzhenskaya, O.A.; Solonnikov, V.A.; Ural’tceva, N.N., Linear and quasi-linear parabolic equations, (1968), Amer. Math. Soc. Providence, RI, (in Russian); English translation: · Zbl 0174.15403
[16] Maremonti, P.; Solonnikov, V.A., On the estimates of solutions of evolution Stokes problem in anisotropic Sobolev spaces with mixed norm, Zap. nauchn. sem. S.-peterburg. otdel. mat. inst. Steklov. (POMI), J. math. sci. (N.Y.), 87, 5, 3859-3877, (1997), (in Russian); English translation: · Zbl 0909.35105
[17] Maugeri, A.; Palagachev, D.K.; Softova, L.G., Elliptic and parabolic equations with discontinuous coefficients, Math. res., vol. 109, (2000), Wiley-VCH Berlin · Zbl 0958.35002
[18] Palagachev, D.; Softova, L., A priori estimates and precise regularity for parabolic systems with discontinuous data, Discrete contin. dyn. syst., 13, 3, 721-742, (2005) · Zbl 1091.35035
[19] Palagachev, D.; Softova, L., Characterization of the interior regularity for parabolic systems with discontinuous coefficients, Atti. accad. naz. lincei cl. sci. fis. mat. natur. rend. lincei (9) mat. appl., 16, 125-132, (2005) · Zbl 1225.35116
[20] Palagachev, D.; Softova, L., Fine regularity for elliptic systems with discontinuous ingredients, Arch. math. (basel), 86, 2, 145-153, (2006) · Zbl 1242.35120
[21] Ragusa, M.; Tachikawa, A., Partial regularity of the minimizers of quadratic functionals with VMO coefficients, J. London math. soc. (2), 72, 3, 609-620, (2005) · Zbl 1161.35347
[22] Softova, L., Quasilinear parabolic operators with discontinuous ingredients, Nonlinear anal., 52, 4, 1079-1093, (2003) · Zbl 1290.35144
[23] Softova, L., \(W_p^{2, 1}\)-solvability for parabolic Poincaré problem, Comm. partial differential equations, 29, 11-12, 1783-1798, (2004) · Zbl 1105.35045
[24] Softova, L., Singular integrals and commutators in generalized Morrey spaces, Acta math. sin. (engl. ser.), 22, 3, 757-766, (2006) · Zbl 1129.42372
[25] Softova, L.; Weidemaier, P., Quasilinear parabolic problems in spaces of maximal regularity, J. nonlinear convex anal., 7, 3, 529-540, (2006) · Zbl 1119.35030
[26] Weidemaier, P., Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed \(L_p\)-norm, Electron. res. announc. amer. math. soc., 8, 47-51, (2002) · Zbl 1015.35036
[27] Weidemaier, P., On \(L_p\)-estimates of optimal type for the parabolic oblique derivative problem with VMO-coefficients—a refined version, (), 529-536 · Zbl 1085.35063
[28] Weidemaier, P., On \(L_p\)-estimates of optimal type for the parabolic oblique derivative problem with VMO coefficients, Differential and integral equations, 18, 8, 935-946, (2005) · Zbl 1212.35194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.