## Boundary conditions for regularized 13-moment-equations for micro-channel-flows.(English)Zbl 1132.76049

Summary: Boundary conditions are the major obstacle in simulations based on advanced continuum models of rarefied and micro-flows of gases. In this paper, we present a theory how to combine the regularized 13-moment-equations derived from Boltzmann equation with boundary conditions obtained from Maxwell kinetic accommodation model. While for the linear case these kinetic boundary conditions suffice, we need additional conditions in the nonlinear case. These are provided by the bulk solutions obtained after properly transforming the equations while keeping their asymptotic accuracy with respect to Boltzmann equation. After finding a suitable set of boundary conditions and equations, we formulate a numerical method for generic shear flow problems. Several test simulations demonstrate the stable and oscillation-free performance of the new approach.

### MSC:

 76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics 76M20 Finite difference methods applied to problems in fluid mechanics
Full Text:

### References:

 [1] Ansumali, S.; Karlin, I.V.; Arcidiacono, S.; Abbas, A.; Prasianakis, N.I., Hydrodynamics beyond navier – stokes: exact solutions to the lattice Boltzmann hierarchy, Phys. rev. lett., 98, 124502, (2007) [2] Agarwal, R.K.; Yun, K.Y.; Balakrishnan, R., Beyond navier – stokes: Burnett equations for flows in the continuum-transition regime, Phys. fluids, 13, 3061-3085, (2001), Erratum: Phys. Fluids 14 (2002) 1818 · Zbl 1184.76018 [3] Au, J.D.; Torrilhon, M.; Weiss, W., The shock tube study in extended thermodynamics, Phys. fluids, 13, 8, 2423-2432, (2001) · Zbl 1184.76037 [4] Bird, G.A., Molecular gas dynamics and the direct simulation of gas flows, (1998), Oxford University Press New York · Zbl 0709.76511 [5] Bobylev, A.V., The chapman – enskog and Grad methods for solving the Boltzmann equation, Sov. phys. dokl., 27, 29-31, (1982) [6] Bobylev, A.V., Instabilities in the chapman – enskog expansion and hyperbolic Burnett equations, J. stat. phys., 124, 2-4, 371-399, (2006) · Zbl 1134.82031 [7] Cercignani, C., The Boltzmann equation and its applications, Applied mathematical sciences, vol. 67, (1988), Springer New York · Zbl 0646.76001 [8] Chapman, S.; Cowling, T.G., The mathematical theory of non-uniform gases, (1970), Cambridge University Press Cambridge · Zbl 0098.39702 [9] Eu, B.-C., A modified moment method and irreversible thermodynamics, J. chem. phys., 73, 6, 2958-2969, (1980) [10] Grad, H., On the kinetic theory of rarefied gases, Commun. pure appl. math., 2, 331-407, (1949) · Zbl 0037.13104 [11] Grad, H., Principles of the kinetic theory of gases, () · Zbl 0105.42104 [12] Gu, X.; Emerson, D., A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions, J. comput. phys., 225, 263-283, (2007) · Zbl 1201.76127 [13] Jin, S.; Slemrod, M., Regularization of the Burnett equations via relaxation, J. stat. phys., 103, 5-6, 1009-1033, (2001) · Zbl 1019.82018 [14] Karniadakis, G.E.; Beskok, A., Micro flows: fundamentals and simulation, (2001), Springer New York [15] Knudsen, M., Die gesetze der molekularströmung und der inneren reibungsströmung der gase durch Röhren, Ann. phys., 333, 75-130, (1909) · JFM 40.0825.02 [16] Levermore, C.D., Moment closure hierarchies for kinetic theories, J. stat. phys., 83, 5-6, 1021-1065, (1996) · Zbl 1081.82619 [17] Lockerby, D.A.; Reese, J.M., High-resolution Burnett simulations of micro Couette flow and heat transfer, J. comput. phys., 188, 2, 333-347, (2003) · Zbl 1041.76064 [18] Maxwell, J.C., On stresses in rarefied gases arising from inequalities of temperature, Phil. trans. roy. soc. (London), 170, 231-256, (1879) · JFM 11.0777.01 [19] Müller, I.; Ruggeri, T., Rational extended thermodynamics, Springer tracts in natural philosophy, vol. 37, (1998), Springer New York · Zbl 0895.00005 [20] Müller, I.; Reitebuch, D.; Weiss, W., Extended thermodynamics – consistent in order of magnitude, Cont. mech. thermodyn., 15, 2, 411-425, (2003) · Zbl 1057.80002 [21] Myong, R.-S., A computational method for eu’s generalized hydrodynamic equations of rarefied and microscale gas dynamics, J. comput. phys., 168, 1, 47-72, (2001) · Zbl 1074.76573 [22] Ohwada, T.; Sone, Y.; Aoki, K., Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules, Phys. fluids A, 1, 12, 2042-2049, (1989) · Zbl 0696.76092 [23] Rosenau, P., Extending hydrodynamics via the regularization of the chapman – enskog expansion, Phys. rev. A, 40, 7193-7196, (1989) [24] Seeger, S.; Hoffmann, H., The comulant method in computational kinetic theory, Cont. mech. therm., 12/6, 403, (2000) [25] Sharipov, F.; Seleznev, V., Data on internal rarefied gas flows, J. phys. chem. ref. data, 27, 3, 657-706, (1998) [26] Struchtrup, H., Macroscopic transport equations for rarefied gas flows, Interaction of mechanics and mathematics, (2005), Springer New York [27] H. Struchtrup, Grad’s moment equations for microscale flows, in: 23rd International Symposium on Rarefied Gas Dynamics, AIP Proceedings, vol. 663, 2003, pp. 792-799. · Zbl 1062.76589 [28] Struchtrup, H., Stable transport equations for rarefied gases at high orders in the Knudsen number, Phys. fluids, 16, 11, 3921-3934, (2004) · Zbl 1187.76505 [29] Struchtup, H.; Thatcher, T., Bulk equations and Knudsen layers for the regularized 13 moment equations, Cont. mech. thermodyn., 19, 3, 177-189, (2007) · Zbl 1160.76407 [30] Struchtrup, H.; Torrilhon, M., Regularization of grad’s 13-moment-equations: derivation and linear analysis, Phys. fluids, 15/9, 2668-2680, (2003) · Zbl 1186.76504 [31] Struchtrup, H.; Torrilhon, M., H-theorem, regularization, and boundary conditions for linearized 13 moment equations, Phys. rev. lett., 99, 014502, (2007) [32] Y. Suzuki, B. van Leer, Application of the 10-moment model to MEMS flows, 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-1398, 2005. [33] T. Thatcher, Microscale Gas Flow: A Comparison of Grad’s 13 Moment Equations and Other Continuum Approaches, Masters Thesis, Dept. Mech. Eng., Univ. of Victoria, Canada, 2005. [34] Torrilhon, M., Two-dimensional bulk microflow simulations based on regularized 13-moment-equations, SIAM multiscale model. simul., 5, 3, 695-728, (2006) · Zbl 1388.76340 [35] M. Torrilhon, Regularized 13-moment-equations, in: 25th International Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, 2006. · Zbl 1388.76340 [36] Torrilhon, M.; Struchtrup, H., Regularized 13-moment-equations: shock structure calculations and comparison to Burnett models, J. fluid mech., 513, 171-198, (2004) · Zbl 1107.76069 [37] Vincenti, W.G.; Kruger, C.H., Introduction to physical gas dynamics, (1965), Wiley New York [38] Xu, K.; Li, Z.-H., Microchannel flow in the slip regime: gas-kinetic BGK-burnett solutions, J. fluid mech., 513, 87-110, (2004) · Zbl 1107.76070 [39] Zheng, Y.; Garcia, A.L.; Alder, J.B., Comparison of kinetic theory and hydrodynamics for Poiseuille flow, J. stat. phys., 109, 495-505, (2002) · Zbl 1101.82336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.