×

zbMATH — the first resource for mathematics

Two-phase equilibria in the anti-plane shear of an elastic solid with interfacial effects via global bifurcation. (English) Zbl 1132.74033
Summary: We consider a simplified model of a two-phase elastic solid with small interfacial energy in forced anti-plane shear. We propose a novel approach to finding meta-stable equilibria (local minima of potential energy), based upon global bifurcation theory, a priori bounds and numerical path following. In particular, we treat the reciprocal of the capillarity coefficient as a continuation parameter, and we fully exploit the hidden symmetry of our elliptic boundary value problem, both strategies of which are crucial for obtaining rigorous existence results and for performing reliable and efficient computation. We obtain branches of locally stable equilibria exhibiting phase nucleation (and anti-nucleation) and fine layering of mixtures.

MSC:
74N05 Crystals in solids
74G60 Bifurcation and buckling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R.A. 1975 Sobolev spaces. New York, NY: Academic Press. · Zbl 0314.46030
[2] Agmon, S. 1960 The <i>L</i><sup><i>p</i></sup> approach to the Dirichlet problem. <i>Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. III. Ser.</i>&nbsp;<b>13</b>, 405–448. · Zbl 0093.10601
[3] Ball, J.M. & James, R.D. 1987 Fine phase mixtures as minimizers of energy. <i>Arch. Rat. Mech. Anal.</i>&nbsp;<b>100</b>, 13–52, (doi:10.1007/BF00281246). · Zbl 0629.49020
[4] Ball, J.M. & James, R.D. 1992 Proposed experimental tests of a theory of fine microstructure and the two-well problem. <i>Phil. Trans. R. Soc. A</i>&nbsp;<b>338</b>, 389–450, (doi:10.1098/rsta.1992.0013). · Zbl 0758.73009
[5] Bhattacharya, K. 2003 Microstructure of martensite. Oxford, UK: Oxford University Press. · Zbl 1109.74002
[6] Carr, J., Gurtin, M.E. & Slemrod, M. 1984 Structured phase transitions on a finite interval. <i>Arch. Rat. Mech. Anal.</i>&nbsp;<b>86</b>, 317–351, (doi:10.1007/BF00280031). · Zbl 0564.76075
[7] Chu, C.-H. 1993 Hysteresis and microstructures: a study of biaxial loading on compound twins of copper–aluminum–nickel single crystals. Ph.D. thesis, University of Minnesota.
[8] Fried, E. 1993 Construction of two-phase equilibria in a non-elliptic hyperelastic material. <i>J. Elasticity</i>&nbsp;<b>31</b>, 71–123. · Zbl 0779.73011
[9] Healey, T.J. & Kielhöfer, H. 1991 Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations. <i>Arch. Rat. Mech. Anal.</i>&nbsp;<b>113</b>, 299–311, (doi:10.1007/BF00374696). · Zbl 0726.35013
[10] Huo, Y. & Müller, I. 2003 Interfacial and inhomogeneity penalties in phase transitions. <i>Continuum Mech. Thermodyn.</i>&nbsp;<b>15</b>, 395–407, (doi:10.1007/s00161-003-0124-6). · Zbl 1068.74590
[11] James, R.D., Kohn, R.V. & Shield, T.W. 1995 Modeling of branched needle micorstructures at the edge of a martensitic laminate. <i>J. Phys. IV</i>&nbsp;<b>C8</b>, 253–259.
[12] Kielhöfer, H. 1997 Pattern formation of the stationary Cahn–Hilliard model. <i>Proc. R. Soc. Edin. Sect. A</i>&nbsp;<b>127</b>, 1219–1243. · Zbl 0886.35021
[13] Kohn, R.V. & Müller, S. 1994 Surface energy and microstructure in coherent phase transitions. <i>Comm. Pure Appl. Math.</i>&nbsp;<b>XLVII</b>, 405–435. · Zbl 0803.49007
[14] Lifshitz, A.E. & Rybnikov, G.L. 1985 Dissipative structures and couette flow in a non-Newtonian fluid. <i>Sov. Phys. Dokl.</i>&nbsp;<b>30</b>, 275–278. · Zbl 0632.76009
[15] Luskin, M. 1996 On the computation of crystalline microsturcture. <i>Acta Numerica</i>&nbsp;<b>5</b>, 191–258.
[16] Maier-Paape, S. & Miller, U. 2002 Path-following the equilibria of the Cahn–Hilliard equation on the square. <i>Comput. Visual Sci.</i>&nbsp;<b>5</b>, 115–138, (doi:10.1007/s00791-002-0095-3). · Zbl 1029.65138
[17] Miller, U. 2005 <i>Rigorous numerics using Conley index theory</i>. Ph.D. thesis, University of Augsburg. Berlin, Germany: Logos Verlag. · Zbl 1090.37010
[18] Müller, S. 1993 Singular perturbations as a selection criterion for periodic minimizing sequences. <i>Calc. Var.</i>&nbsp;<b>1</b>, 169–204.
[19] Pettinger, A. & Abeyaratne, R. 2000 On the nucleation and propogation of thermoelastic phase transformation in anti-plane shear. Parts 1 & 2. <i>Comput. Mech.</i>&nbsp;<b>26</b>, 13–38, (doi:10.1007/s004660000146). · Zbl 0983.74047
[20] Rabinowitz, P. 1971 Some global results for nonlinear eigenvalue problems. <i>J. Funct. Anal.</i>&nbsp;<b>7</b>, 487–513, (doi:10.1016/0022-1236(71)90030-9).
[21] Rosakis, P. 1992 Compact zones of shear transformation in an anisotropic solid. <i>J. Mech. Phys. Solids</i>&nbsp;<b>40</b>, 1163–1195, (doi:10.1016/0022-5096(92)90011-P).
[22] Triantafyllidis, N. & Bardenhagen, S. 1993 On higher order gradient continuum theories in 1-d nonlinear elasticity. <i>J. Elasticity</i>&nbsp;<b>33</b>, 259–293, (doi:10.1007/BF00043251). · Zbl 0819.73008
[23] Vainchtein, A., Healey, T.J. & Rosakis, P. 1999 Bifurcation and metastability in a new one-dimensional model for matensitic phase transitions. <i>Comput. Methods Appl. Mech. Eng.</i>&nbsp;<b>170</b>, 407–421, (doi:10.1016/S0045-7825(98)00205-9).
[24] Yip, N.K. 2006 Structure of stable solutions of a one-dimensional variational problem. <i>ESAIM: Control Optim. Calc. Var.</i>&nbsp;<b>12</b>, 721–751, (doi:10.1051/cocv:2006019).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.