×

Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links. (English) Zbl 1132.68781

Summary: This paper presents the development of structural dynamic equations of motion for a 3-PRR parallel manipulator with three flexible intermediate links, based on the assumed mode method. Lagrange’s equation is used to derive the dynamic model of the manipulator system. Flexible intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions. Dynamic equations of motion of a 3-PRR parallel manipulator with three flexible links are developed by adopting the assumed mode method. The effect of concentrated rotational inertia at both ends of intermediate links is included in this model. Numerical simulations of vibration responses, coupling forces and inertial forces are presented. The corresponding frequency spectra analysis is performed using the Fast Fourier Transform. Experimental modal tests are performed to validate the theoretical model through comparison and analysis of modal characteristics of the flexible manipulator system.

MSC:

68T40 Artificial intelligence for robotics

Software:

bvp4c
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Winfrey, R.C.: Elastic link mechanism dynamics. ASME J. Eng. Ind. 93, 268–272 (1971) · doi:10.1115/1.3427885
[2] Cleghorn, W.L., Fenton, R.G., Tabarrok, B.: Finite element analysis of hign-speed flexible mechanisms. Mech. Mach. Theory 16, 407–424 (1981) · doi:10.1016/0094-114X(81)90014-8
[3] Sunada, W., Dubowsky, S.: The application of the finite element methods to the dynamic analysis of flexible spatial and co-planar linkage systems. ASME J. Mech. Des. 103(3), 643–651 (1981) · doi:10.1115/1.3254965
[4] Thompson, B.S., Sung, C.K.: A variational formulation for the nonlinear finite element analysis of flexible linkages: Theory, implementation and experimental results. ASME J. Mech. Transm. Autom. Des. 106, 482–488 (1984) · doi:10.1115/1.3258598
[5] Yang, Z., Sadler, J.P.: Large-displacement finite element analysis of flexible linkages. ASME J. Mech. Des. 112, 175–182 (1990) · doi:10.1115/1.2912590
[6] Book, W.J.: Recursive Lagrangian dynamics of fexible manipulator arms. Int. J. Rob. Res. 3(3), 87–101 (1984) · doi:10.1177/027836498400300305
[7] Asada, H., Ma, Z.-D., Tokumaru, H.: Inverse dynamics of flexible robot arms: Modeling and computation for trajectory control. ASME J. Dyn. Syst. Meas. Control 112, 177–185 (1990) · Zbl 0709.93585 · doi:10.1115/1.2896124
[8] Theodore, R.J., Ghosal, A.: Comparison of the assumed modes and finite element models for flexible multi-link manipulators. Int. J. Rob. Res. 14, 91–111 (1995) · Zbl 05422592 · doi:10.1177/027836499501400201
[9] Lowen, G.G., Chassapis, C.: The elastic behavior of linkage: An update. Mech. Mach. Theory 21(1), 33–42 (1986) · doi:10.1016/0094-114X(86)90028-5
[10] Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997) · Zbl 0893.70008 · doi:10.1023/A:1009773505418
[11] Giovagnoni, M.: Dynamics of flexible closed-chain manipulator. ASME Des. Tech. Conf. 69(2), 483–490 (1992)
[12] Lee, J.D., Geng, Z.: Dynamic model of a flexible Stewart platform. Comput. Struct. 48(3), 367–374 (1993) · Zbl 0782.70006 · doi:10.1016/0045-7949(93)90313-3
[13] Zhou, Z., Xi, J., Mechefske, C.K.: Modeling of a fully flexible 3PRS manipulator for vibration analsysis. J. Mech. Des. 128, 403–412 (2006) · doi:10.1115/1.2167655
[14] Kang, B.S., Mills, J.K.: Dynamic modeling of structurally-flexible planar parallel manipulator. Robotica 20(3), 329–339 (2002)
[15] Wang, X., Mills, J.K.: experimental modal analysis of flexible linkages in a smart parallel platform. Proceeding of the 7th Cansmart Meeting–International Workshop on Smart Materials and Structures, 37–46, Montreal, Canada (2004)
[16] Karkoub, M., Yigit, A.S.: Vibration control of a four-bar mechanism with a flexible coupler link. J. Sound Vib. 222(2), 171–189 (1999) · doi:10.1006/jsvi.1998.2080
[17] Solve initial value problems for ordinary differential equations (ODEs). MATLAB Function Reference, The Math Works, Inc. (1994–2005)
[18] Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Research Studies Press, City (2000)
[19] Moore, B.: Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26(1), 17–32 (1981) · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[20] Gangsaas, Dl., Ly, U., Norman, D.: Practical gust load alleviation and flutter suppression control laws based on a LQG methodology. Proceedings of the AIAA 19th Aerospace Sciences Meetings, Jun 12–15 (1981)
[21] Rao, S.S.: Mechanical Vibrations, 3rd edn. Addison-Wesley, Reading, MA (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.