zbMATH — the first resource for mathematics

Gaussian free fields for mathematicians. (English) Zbl 1132.60072
Summary: The \(d\)-dimensional Gaussian free field (GFF), also called the (Euclidean bosonic) massless free field, is a \(d\)-dimensional-time analog of Brownian motion. Just as Brownian motion is the limit of the simple random walk (when time and space are appropriately scaled), the GFF is the limit of many incrementally varying random functions on \(d\)-dimensional grids. We present an overview of the GFF and some of the properties that are useful in light of recent connections between the GFF and the Schramm-Loewner evolution.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J65 Brownian motion
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
81T10 Model quantum field theories
60B11 Probability theory on linear topological spaces
Full Text: DOI arXiv
[1] Adams, R.A.: Sobolev Spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York–London, (1975) Pure and Applied Mathematics, vol. 65 · Zbl 0314.46030
[2] Bolthausen E., Ioffe D. (1997). Harmonic crystal on the wall: a microscopic approach. Comm. Math. Phys. 187(3): 523–566 · Zbl 0893.60062
[3] Bolthausen E., Deuschel J.-D., Giacomin G. (2001). Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29(4): 1670–1692 · Zbl 1034.82018
[4] Bolthausen, E., Deuschel, J-D., Zeitouni, O.: Absence of a wetting transition for a pinned harmonic crystal in dimensions three and larger. J. Math. Phys., 41(3), 1211–1223, (2000). Probabilistic techniques in equilibrium and nonequilibrium statistical physics · Zbl 0977.82019
[5] Cardy, J.L.: Conformal invariance and statistical mechanics. In: Champs, cordes et phénomènes critiques (Les Houches, 1988), pp. 169–245. North-Holland, Amsterdam (1990)
[6] Di Francesco P., Mathieu P., Sénéchal D. (1997). Conformal Field Theory. Graduate Texts in Contemporary Physics., Springer Berlin Heidelberg New York
[7] Durrett R. (1996). Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont, CA · Zbl 1202.60001
[8] Dynkin E.B. (1983). Markov processes as a tool in field theory. J. Funct. Anal. 50(2): 167–187 · Zbl 0522.60078
[9] Dynkin E.B. (1984). Gaussian and non-Gaussian random fields associated with Markov processes. J. Funct. Anal. 55(3): 344–376 · Zbl 0533.60061
[10] Dynkin E.B. (1984). Polynomials of the occupation field and related random fields. J. Funct. Anal. 58(1): 20–52 · Zbl 0552.60075
[11] Fernández, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, Berlin Heidelberg Newyork (1992). · Zbl 0761.60061
[12] Gawedzki K., Kupiainen A. (1983). Block spin renormalization group for dipole gas and \((\nabla\varphi)^{4}\) . Ann. Phys. 147(1): 198–243
[13] Giacomin G. (2000). Anharmonic lattices, random walks and random interfaces. Recent Research Developments in Statistical Physics, Transworld Research I: 97–118
[14] Giacomin G., Olla S., Spohn H. (2001). Equilibrium fluctuations for \(\nabla\phi\) interface model. Ann. Probab. 29(3): 1138–1172 · Zbl 1034.82018
[15] Glimm J., Jaffe A. (1987). Quantum Physics, 2nd edn. Springer Berlin Heidelberg, New York A functional integral point of view · Zbl 0461.46051
[16] Gross, L.: Abstract Wiener spaces. In: Proc. Fifth Berkeley Sympos. Math. Statist., Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, Part 1, pp. 31–42. University of California Press, Berkeley (1967)
[17] Henkel M. (1999). Conformal Invariance and Critical Phenomena. Texts and Monographs in Physics, Springer Berlin Heidelberg Newyork · Zbl 1053.82001
[18] Hu, X., Peres, Y.: Thick points of the gaussian free field (in preparation) · Zbl 1201.60047
[19] Janson S. (2001). Dominos and the Gaussian free field. Ann. Probab. 29(3): 1128–1137 · Zbl 1032.60076
[20] Kenyon R. (2001). Dominos and the Gaussian free field. Ann. Probab. 29(3): 1128–1137 · Zbl 1034.82021
[21] Naddaf A., Spencer T. (1997). On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183(1): 55–84 · Zbl 0871.35010
[22] Netrusov Yu., Safarov Yu. (2005). Weyl asymptotic formula for the Laplacian on domains with rough boundaries. Comm. Math. Phys. 253(2): 481–509 · Zbl 1076.35085
[23] Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field, arXiv:math.PR/0605337 · Zbl 1210.60051
[24] Sheffield, S.: Random surfaces. Astéisque, 304 (2005) · Zbl 1104.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.