×

zbMATH — the first resource for mathematics

Controllablity of a quantum particle in a 1D variable domain. (English) Zbl 1132.35446
We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function of the particle and the control is the length \(l(t)\) of the potential well. We prove the following controllability result: given \(\phi_0\) close enough to an eigenstate corresponding to the length \(l = 1\) and \(\phi_f\) close enough to another eigenstate corresponding to the length \(l = 1\), there exists a continuous function \(l: [0, T ] \to \mathbb{R}_+^*\) with \(T > 0\), such that \(l(0) = 1\) and \(l(T ) = 1\), and which moves the wave function from \(\phi_0\) to \(\phi_f\) in time \(T\). In particular, we can move the wave function from one eigenstate to another one by acting on the length of the potential well in a suitable way. Our proof relies on local controllability results proved with moment theory, a Nash-Moser implicit function theorem and expansions to the second order.

MSC:
35Q40 PDEs in connection with quantum mechanics
35B37 PDE in connection with control problems (MSC2000)
35Q55 NLS equations (nonlinear Schrödinger equations)
93B05 Controllability
93C20 Control/observation systems governed by partial differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] F. Albertini and D. D’Alessandro, Notions of controllability for bilinear multilevel quantum systems. IEEE Trans. Automat. Control 48 (2003) 1399-1403. MR2004373 · Zbl 1364.93059
[2] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels (1991). Zbl0791.47044 MR1172111 · Zbl 0791.47044
[3] C. Altafini, Controllability of quantum mechanical systems by root space decomposition of su(n). J. Math. Phys. 43 (2002) 2051-2062. Zbl1059.93016 MR1893660 · Zbl 1059.93016
[4] J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982). Zbl0485.93015 MR661034 · Zbl 0485.93015
[5] L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Matematica (N.S.) 63 (2006) 293-325. Zbl1109.49003 MR2254931 · Zbl 1109.49003
[6] L. Baudouin and J. Salomon, Constructive solution of a bilinear control problem. C.R. Math. Acad. Sci. Paris 342 (2006) 119-124. Zbl1079.49021 MR2193658 · Zbl 1079.49021
[7] L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control. J. Differential Equations 216 (2005) 188-222. Zbl1109.35094 MR2158922 · Zbl 1109.35094
[8] K. Beauchard, Local controllability of a 1-D beam equation. SIAM J. Control Optim. (to appear). Zblpre05558449 MR2407015 · Zbl 1172.35325
[9] K. Beauchard, Local Controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851-956. Zbl1124.93009 MR2144647 · Zbl 1124.93009
[10] K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well. J. Functional Analysis 232 (2006) 328-389. Zblpre05017416 MR2200740 · Zbl 1188.93017
[11] R. Brockett, Lie theory and control systems defined on spheres. SIAM J. Appl. Math. 25 (1973) 213-225. Zbl0272.93003 MR327337 · Zbl 0272.93003
[12] E. Cancès, C. Le Bris and M. Pilot, Contrôle optimal bilinéaire d’une équation de Schrödinger. C.R. Acad. Sci. Paris, Série I 330 (2000) 567-571. Zbl0953.49005 MR1760440 · Zbl 0953.49005
[13] J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295-312. Zbl0760.93067 MR1164379 · Zbl 0760.93067
[14] J.-M. Coron, Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271-276. Zbl0781.76013 MR1233425 · Zbl 0781.76013
[15] J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. Zbl0848.76013 MR1380673 · Zbl 0848.76013
[16] J.-M. Coron, Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations. ESAIM: COCV 8 (2002) 513-554. Zbl1071.76012 MR1932962 · Zbl 1071.76012
[17] J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well. C.R. Acad. Sci., Série I 342 (2006) 103-108. Zbl1082.93002 MR2193655 · Zbl 1082.93002
[18] J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6 (2004) 367-398. Zbl1061.93054 MR2060480 · Zbl 1061.93054
[19] J.-M. Coron and A. Fursikov, Global exact controllability of the 2D Navier-Stokes equation on a manifold without boundary. Russ. J. Math. Phys. 4 (1996) 429-448. Zbl0938.93030 MR1470445 · Zbl 0938.93030
[20] A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys 54 (1999) 565-618. Zbl0970.35116 MR1728643 · Zbl 0970.35116
[21] O. Glass, On the controllability of the 1D isentropic Euler equation. J. European Mathematical Society 9 (2007) 427-486. Zbl1139.35014 MR2314104 · Zbl 1139.35014
[22] O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. Zbl0940.93012 MR1745685 · Zbl 0940.93012
[23] O. Glass, On the controllability of the Vlasov-Poisson system. J. Differential Equations 195 (2003) 332-379. Zbl1109.93007 MR2016816 · Zbl 1109.93007
[24] G. Gromov, Partial Differential Relations. Springer-Verlag, Berlin-New York-London (1986). Zbl0651.53001 MR864505 · Zbl 0651.53001
[25] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. Zbl0685.93039 MR1046761 · Zbl 0685.93039
[26] L. Hörmander, On the Nash-Moser Implicit Function Theorem. Annales Academiae Scientiarum Fennicae (1985) 255-259. Zbl0591.58003 MR802486 · Zbl 0591.58003
[27] T. Horsin, On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83-95. Zbl0897.93034 MR1612027 · Zbl 0897.93034
[28] R. Ilner, H. Lange and H. Teismann, Limitations on the control of Schrödinger equations. ESAIM: COCV 12 (2006) 615-635. Zblpre05117625 MR2266811 · Zbl 1162.93316
[29] T. Kato, Perturbation Theory for Linear operators. Springer-Verlag, Berlin, New-York (1966). Zbl0148.12601 MR203473 · Zbl 0148.12601
[30] W. Krabs, On moment theory and controllability of one-dimensional vibrating systems and heating processes. Springer - Verlag (1992). Zbl0955.93501 MR1162111 · Zbl 0955.93501
[31] I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differential Integral Equations 5 (1992) 571-535. Zbl0784.93032 MR1157485 · Zbl 0784.93032
[32] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carlemann estimates. J. Inverse Ill Posed-Probl. 12 (2004) 183-231. Zbl1061.35170 MR2061430 · Zbl 1061.35170
[33] G. Lebeau, Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. Zbl0838.35013 · Zbl 0838.35013
[34] Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24-34. Zbl0795.93018 · Zbl 0795.93018
[35] M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automat. Control 49 (2004) 745-747. MR2057808 · Zbl 1365.81065
[36] E. Sontag, Control of systems without drift via generic loops. IEEE Trans. Automat. Control 40 (1995) 1210-1219. Zbl0837.93019 MR1344033 · Zbl 0837.93019
[37] G. Turinici, On the controllability of bilinear quantum systems, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, C. Le Bris and M. Defranceschi Eds., Lect. Notes Chemistry 74, Springer (2000). Zbl1007.81019 MR1857459 · Zbl 1007.81019
[38] E. Zuazua, Remarks on the controllability of the Schrödinger equation. CRM Proc. Lect. Notes 33 (2003) 193-211. MR2043529
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.