zbMATH — the first resource for mathematics

Graded Calabi Yau algebras of dimension 3. (English) Zbl 1132.16017
A Calabi-Yau algebra of dimension \(3\) is an algebra for which the third power of the shift functor on the bounded derived category of finite-dimensional modules is a Serre functor on this category. In the paper under review the author shows that graded Calabi-Yau algebras of dimension \(3\) are path algebras of quivers with relations derived from superpotentials. The author also gives an alternative condition in terms of exactness of a certain bimodule complex. It is further shown that for a given quiver \(Q\) and degree \(d\) the set of those superpotentials of degree \(d\), which give rise to Calabi-Yau quotients of the path algebra of \(Q\), is either empty or contains almost all superpotentials (in the measure theoretic sense). Finally, the author applies Gröbner basis techniques to show how one can determine the possible degrees of “good” superpotentials for some simple quivers.

16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16G20 Representations of quivers and partially ordered sets
18E30 Derived categories, triangulated categories (MSC2010)
18G10 Resolutions; derived functors (category-theoretic aspects)
Full Text: DOI arXiv
[1] Artin, M.; Schelter, W., Graded algebras of global dimension 3, Adv. math., 66, 171-216, (1987) · Zbl 0633.16001
[2] Bergman, G.M., The diamond lemma for ring theory, Adv. math., 29, 2, 178-218, (1978) · Zbl 0326.16019
[3] Bocklandt, R.; Le Bruyn, L.; Symens, S., Isolated singularities, smooth orders, and Auslander regularity, Comm. algebra, 31, 12, 6019-6036, (2003) · Zbl 1071.14500
[4] Bondal, A.I.; Kapranov, M.M., Representable functors, Serre functors, and reconstructions, Izv. akad. nauk SSSR ser. mat., 53, 6, 1183-1205, (1989), 1337 · Zbl 0703.14011
[5] Butler, M.C.R.; King, A.D., Minimal resolutions of algebras, J. algebra, 212, 1, 323-362, (1999) · Zbl 0926.16006
[6] Crawley-Boevey, W.; Etingof, P.; Ginzburg, V., Noncommutative geometry and quiver algebras, Adv. math., 209, 274-336, (2007) · Zbl 1111.53066
[7] Crawley-Boevey, W.; Holland, M.P., Noncommutative deformations of Kleinian singularities, Duke math. J., 92, 3, 605-635, (1998) · Zbl 0974.16007
[8] The GAP group, GAP — Groups, Algorithms, and Programming, Version 4.4. http://www.gap-system.org, 2005
[9] Ginzburg, V., Calabi Yau algebras
[10] Iyama, O.; Reiten, I., Fomin – zelevinsky mutation and tilting modules over Calabi-Yau algebras · Zbl 1162.16007
[11] Kapustin, A.N.; Orlov, D.O., Lectures on mirror symmetry, derived categories, and D-branes, Uspekhi mat. nauk, 59, 5(359), 101-134, (2004) · Zbl 1074.14036
[12] Keller, B.; Vossieck, D., Sous LES catégories dérivées, C. R. acad. sci. Paris, 305, 225-228, (1987) · Zbl 0628.18003
[13] Mora, T., An introduction to commutative and noncommutative Gröbner bases, Theoret. comput. sci., 134, 1, 131-173, (1994), Second International Colloquium on Words, Languages and Combinatorics (Kyoto, 1992) · Zbl 0824.68056
[14] Reiten, I.; Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. amer. math. soc., 15, 2, 295-366, (2002), Electronic · Zbl 0991.18009
[15] R. Rouquier, Perverse morita equivalences and Calabi Yau algebras, Talk at Perspectives in Mathematics: Algebras and Representations, Bielefeld 4-5 Feb. 2005
[16] M. Van den Bergh, Introduction to super potentials, M.F.O. Report, vol. 6, 2005, pp. 394-396. http://www.mfo.de/programme/schedule/2005/06/OWR_2005_06.pdf
[17] J.-L. Verdier, Des catégories drivées des catégories abéliennes, S.M.F. Astérisque 239, 1996
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.